980 resultados para ash deposit
Resumo:
Invasive and exotic species present a serious threat to the health and sustainability of natural ecosystems. These species often benefit from anthropogenic activities that aid their introduction and dispersal. This dissertation focuses on invasion dynamics of the emerald ash borer, native to Asia, and European earthworms. These species have shown detrimental impacts in invaded forest ecosystems across the Great Lakes region, and continue to spread via human-assisted long distance dispersal and by natural modes of dispersal into interior forests from areas of introduction. Successful forest management requires that the impact and effect of invasive species be considered and incorporated into management plans. Understanding patterns and constraints of introduction, establishment, and spread will aid in this effort. To assist in efforts to locate introduction points of emerald ash borer, a multicriteria risk model was developed to predict the highest risk areas. Important parameters in the model were road proximity, land cover type, and campground proximity. The model correctly predicted 85% of known emerald ash borer invasion sites to be at high risk. The model’s predictions across northern Michigan can be used to focus and guide future monitoring efforts. Similar modeling efforts were applied to the prediction of European earthworm invasion in northern Michigan forests. Field sampling provided a means to improve upon modeling efforts for earthworms to create current and future predictions of earthworm invasion. Those sites with high soil pH and high basal area of earthworm preferred overstory species (such as basswood and maples) had the highest likelihood of European earthworm invasion. Expanding beyond Michigan into the Upper Great Lakes region, earthworm populations were sampled across six National Wildlife Refuges to identify potential correlates and deduce specific drivers and constraints of earthworm invasion. Earthworm communities across all refuges were influenced by patterns of anthropogenic activity both within refuges and in surrounding ecoregions of study. Forest composition, soil pH, soil organic matter, anthropogenic cover, and agriculture proximity also proved to be important drivers of earthworm abundance and community composition. While there are few management options to remove either emerald ash borer or European earthworms from forests after they have become well established, prevention and early detection are important and can be beneficial. An improved understanding the factors controlling the distribution and invasion patterns of exotic species across the landscape will aid efforts to determine their consequences and generate appropriate forest management solutions to sustain ecosystem health in the presence of these invaders.
Resumo:
The exotic emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was first discovered in North America in southeastern Michigan, USA, and Windsor, Ontario, Canada in 2002. Significant ash (Fraxinus spp.) mortality has been caused in areas where this insect has become well established, and new infestations continue to be discovered in several states in the United States and in Canada. This beetle is difficult to detect when it invades new areas or occurs at low density. Girdled trap tree and ground surveys have been important tools for detecting emerald ash borer populations, and more recently, purple baited prism traps have been used in detection efforts. Girdled trap trees were found to be more effective than purple prism traps at detecting emerald ash borer as they acted as sinks for larvae in an area of known low density emerald ash borer infestation. The canopy condition of the trap trees was not predictive of whether they were infested or not, indicating that ground surveys may not be effective for detection in an area of low density emerald ash borer population. When landing rates of low density emerald ash borer populations were monitored on non-girdled ash trees, landing rates were higher on larger, open grown trees with canopies that contain a few dead branches. As a result of these studies, we suggest that the threshold for emerald ash borer detection using baited purple prism traps hung at the canopy base of trees is higher than for girdled trap trees. In addition, detection of developing populations of EAB may be possible by selectively placing sticky trapping surfaces on non-girdled trap trees that are the larger and more open grown trees at a site.
Resumo:
This report deals with a bentonite deposit recently developed, approximately seven miles northeast of Warm Springs, Montana. A group of claims have been staked on the deposit and are owned by the Lincoln Mining Company of Anaconda, Montana. The company also has several claims prospected for silver one mile from its present site of operations, but the silver prospects have failed to produce. The bentonite deposit was discovered incidentally during the course of other development work, and at present two adits have been driven into the side of a mountain, each crosscutting a vein-like mass of bentonite varying from two to three feet in width.
Resumo:
Secondary Enrichment of Copper at the Madison Gold Skarn Deposit, Silver Star District, Montana. This paper focuses on the chemical reactions responsible for secondary enrichment of copper...we argue that most of the secondary Cu enrichment occurred during a late hydrothermal event that replaced the high temperature skarn mineral assemblage with hematitic jasperoid. Evidence favoring this "hypogene" Cu enrichment hypothesis is presented.
Resumo:
Gypsum deposits are widespread geographically and are in many geologic formations. Ordinarily their character and origin, for the most part sedimentary, are not difficult to ascertain. Near Lewis and Clark Caverns, east of Whitehall, Montana, occurs a deposit of gypsum unique in many respects.
Resumo:
Kaolin has never been considered an important economic mineral in Montana. Deposits of Kaolin in this state are not described in the literature and apparently very few deposits have been found.
Resumo:
This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.
Resumo:
A deposit of kyanite, an aluminum silicate mineral used in the ceramic industry, occurs in the low foothills of the Gravelly range about 10 miles south of Ennis, Montana. This study deals primarily with the character and origin of the deposit, and its relationship to the surrounding rocks.
Resumo:
Dr. John Dilles discusses the geochemistry of the porphyry Cu-Mo resource found at at Butte, Montana. The porphyry formed from dilute magmatic fluids that contained 1,000s of ppm Cu between 66 and 64 Ma, and at depths of ~8 km. The porphory is zoned from innermost Cu (Ag) ore; to mixed intermediate Cu (Zn, Ag) / Zn-MJn-Ag (Cu, Pb, Au) ore; to an outer Mn-Ag (Pb) ore that grades to barren quartz.
Resumo:
The minerals sillimanite, kyanite, andalusite, dumortierite, and topaz comprise a group of minerals whose high alumina content and physical properties are particularly desirable in the manufacture of refractory products. Sillimanite is the least plentiful of the minerals of this group, and for this reason it is not used extensively at the present time. However, it would be very desirable to the refractory industry if a suitable domestic source of supply could be established.