968 resultados para arbuscular mycorrhizal (AM) fungi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A versatilidade da mandioca (Manihot esculenta Crantz) em adaptar-se a solos de baixa fertilidade, apesar de possuir alto requerimento de nutrientes, tem sido relacionada à ocorrência de associações com os fungos micorrízico-arbusculares (FMA) e a bactérias diazotróficas. Visando avaliar o efeito da inoculação dos FMA e das bactérias diazotróficas, foi conduzido um experimento com plântulas micropropagadas em vasos de 3,5 litros de volume, com solo arenoso desinfestado como substrato. A inoculação das bactérias diazotróficas não apresentou efeito estimulatório, ao passo que inoculações dos FMA isoladamente e em conjunto com bactéria incrementaram todos os parâmetros de crescimento e nutricionais. A inoculação dos FMA, com a Bactéria E, aumentou a parte aérea e as raízes em até 50% e 105%, respectivamente, em relação à inoculação exclusiva com FMA. Efeitos sinergísticos também foram observados no acúmulo de N da parte aérea e das raízes com aumento de até 88% e 173% e no de fósforo em até 83% e 158%, respectivamente. A co-inoculação da Bactéria E com Glomus clarum também aumentou a colonização micorrízica em 40% e a esporulação em 168%, comparada à inoculação do fungo isolado. Estes efeitos benéficos podem ocorrer tanto pela maior absorção de nutrientes pela planta, como pelo estímulo na colonização dos fungos MA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares e A. diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O numero de esporos variou de 18 a 2.070/ 100 mL de solo, e os maiores numero e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima de palhico. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com agua estéril The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum) grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2.070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State), especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Glomus macrocarpum, Acaulospora sp. and Gigaspora margarita. A. diazotrophicus was present in almost all samples of root with the exception of one harvest of sugar cane taken from an area used for the sedimentation of vinasse (distillery waste). It was not possible to detect the bacterium from surface sterilised spores of native arbuscular mycorrhizal fungi (AMF), only from washed ones using sterile water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar a ocorrencia, isolar e identificar fungos micorrízicos carbunculares associados a cultura da mandioca (Manihot esculenta). Amostras de solo rizosférico e de varias partes da planta (raízes, tubérculos, manivas e folhas) de locais nos Estados do Rio de Janeiro, São Paulo e Paraná, foram inoculadas nos meios LGI-P, NFb-malato e NFb-GOC, avaliando-se o numero mais provável de células e a atividade de redução de acetileno. Bactérias diazotróficas foram isoladas de todas as partes da planta, com exceção das folhas, sendo identificadas como Klebsiella sp., Azospirillum lipoferum e uma bactéria denominada "E", provavelmente pertencente ao gênero Burkholderia. A bactéria E acumulou de 7,63 mg a 14,84 mg de N/g de C em meio semi-solido, isento de N, e conseguiu manter a capacidade de fixação biológica de N, mesmo apos uma dezena de repicagens consecutivas. A colonização micorrízica variou de 31% a 69%, e a densidade de esporos de 10 a 384 esporos/100 mL de solo, predominando as espécies Entrophospora colombiana e Acaulospora scrobiculata no Rio de Janeiro, A. scrobiculata e Scutellospora heterogama no Paraná e em Piracicaba (São Paulo) e A. appendicula e S. pellucida em Campinas (São Paulo). This study was performed to evaluate the occurrence and to isolate and identify diazotrophic bacteria and arbuscular mycorrhizal fungi associated with the cassava (Manihot esculenta) crop. Samples from rhizosperical soil, roots, tubers, stems and leaves from several localities of the States of Rio de Janeiro, Sao Paulo and Parana, in Brazil, were inoculated in three media specific for diazotrophic associative bacteria, LG1-P, NFb-malate and NFb-GOC, evaluating the most probable number of cells and the acetylene-reducing activity. Diazotrophic bacteria were detected in all plant parts except for the leaves, and were identified as Klebsiella sp., Azospirillum lipoferum and a bacterium called "E", probably belonging to the Burkholderia genus. Bacterium E was able to accumulate, in the N-free semi-solid media, from 7.63 to 14.84 mg of N/g of C and to maintain N fixation capacity after ten consecutive transferences. Mycorrhizal root colonization varied from 31% to 69% and spore density from 10 to 384 spores/100 mL of soil, predominanting the species Entrophospora colombiana and Acaulospora scrobiculata in Rio de Janeiro, A. scrobiculata and Scutellospora heterogama in Parana and in Piracicaba (Sao Paulo), and A. appendicula and S. pellucida in Campinas (Sao Paulo).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A. peregrina var. falcata form mutualistic symbiosis with arbuscular mycorrhizal fungus. An anatomical and ultrastructural study was carried out to analyze some aspects of this simbiotic association as well as some root features. The results evidenced the presence of fibers with non-lignified thicked secondary walls in the stele and sparse papillae on root surface. A. peregrina var. falcata mycorrhizas presented features of Arum-type (intercellular hyphae) and Paris-type (extensive coils) arbuscular mycorrhiza. Their general appearance with extraradical hyphae, intracellular coils, intercellular hyphae and arbuscules, is in agreement with arbuscular mycorrhizas of several plants. The ultrastructural observations showed that in intercellular hyphae and arbuscules vacuoles were dominant and that in rough endoplasmatic reticulum and small vesicles seems to be associated with arbuscule senescence process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-farm experiments and pot trials were conducted on eight West African soils to explore the mechanisms governing the often reported legume rotation-induced cereal growth increases in this region. Crops comprised pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor Moench), maize (Zea mays L.), cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). In groundnut trials the observed 26 to 85% increases in total dry matter (TDM) of rotation cereals (RC) compared with continuous cereals (CC) in the 4th year appeared to be triggered by site- and crop-specific early season differences in nematode infestation (up to 6-fold lower in RC than in CC), enhanced Nmin and a 7% increase in mycorrhizal (AM) infection. In cowpea trials yield effects on millet and differences in nematode numbers, Nmin and AM were much smaller. Rhizosphere studies indicated effects on pH and acid phosphatase activity as secondary causes for the observed growth differences between RC and CC. In the study region legume-rotation effects on cereals seemed to depend on the capability of the legume to suppress nematodes and to enhance early N and P availability for the subsequent cereal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plantgrowth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonises the roots of a wide range of host plants. In many settings colonisation promotes host growth, increases yield and protects the host from fungal diseases. We evaluated the effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertiliser levels were considered. P. indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70% and 80% respectively. P. indica also increased above ground biomass, 1000 grain weight and total grain weight. P. indica reduced disease severity and increased yield in both high and low fertiliser levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. P. indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three ectomycorrhizal legume trees, Microberlinia bisulcata, Tetraberlinia bifoliolata and T. moreliana, form discrete groves in the southern part of Korup National Park, in southwest Cameroon and contribute c. 45–70% of stand basal area locally in a matrix of otherwise species-rich arbuscular mycorrhizal forest. A transplant experiment was performed to assess the importance of ectomycorrhizal infection associated with proximity to parents in seedling establishment of the grove-forming species. Nonectomycorrhizal seedlings of the three species were transplanted into plots of two forest types, one of high (HEM, within-grove) and one of very low (LEM, outside the grove) abundance of all three species as adult trees. For two species (T. moreliana and M. bisulcata) there was no difference in survival over 16 months, but for the third (T. bifoliolata) survival was best in HEM forest, and correlated with the basal area of adult trees of ectomycorrhizal species. Only one species (T. moreliana) increased in biomass over the experimental period; the others declined. There was no effect of forest type on overall growth of any species, but the survivors of two (T. moreliana and M. bisulcata) had heavier stems in the HEM forest. Differences in survival and growth of transplants between the three species were in accord with the ecology of the species as inferred from the frequency distributions of adult tree size in the forest. Seedlings became infected with ectomycorrhizas in both forest types; where there was a difference in extent of infection (T. moreliana) this was not related to survival or growth; and where there was a difference in survival (T. bifoliolata) this was not related to extent of infection. These results confirm that mycorrhizal inoculum associated with conspecific adults is neither a prerequisite nor a guarantee of seedling establishment, but indicates that in some circumstances there might be benefits of being close to parents. Further research is required to unravel the complexities of ectomycorrhizal community structure in this spatially and temporally heterogeneous forest, and to clarify the extent to which the various hosts share ectomycorrhizal partners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-way N transfers mediated by Pisolithus sp. were examined by excluding root contact and supplying (NH4+)-N-15 or (NO3-)-N-15 to 6-month-old Eucalyptus maculata or Casuarina cunninghamiana grown in two-chambered-pots separated by 37 m screens. Mycorrhizal colonization was 35% in Eucalyptus and 66% in Casuarina (c. 29% N-2-fixation). Using an environmental scanning electron microscope, living hyphae were observed to interconnect Eucalyptus and Casuarina. Biomass and N accumulation was greatest in nodulated mycorrhizal Casuarina/mycorrhizal Eucalyptus pairs, less in nonnodulated mycorrhizal Casuarina/mycorrhizal Eucalyptus pairs, and least in nonnodulated nonmycorrhizal Casuarina/nonmycorrhizal Eucalyptus pairs. In nonnodulated mycorrhizal pairs, N transfers to Eucalyptus or to Casuarina were similar (2.4-4.1 mg per plant in either direction) and were 2.6-4.0 times greater than in nonnodulated nonmycorrhizal pairs. In nodulated mycorrhizal pairs, N transfers were greater to Eucalyptus (5-7 times) and to Casuarina (12-18 times) than in nonnodulated mycorrhizal pairs. Net transfer to Eucalyptus or to Casuarina was low in both nonnodulated nonmycorrhizal (< 0.7 mg per plant) and nonnodulated mycorrhizal pairs (< 1.1 mg per plant). In nodulated mycorrhizal pairs, net transfer to Casuarina was 26.0 mg per plant. The amount and direction of two-way mycorrhiza-mediated N transfer was increased by the presence of Pisolithus sp. and Frankia, resulting in a net N transfer from low-N-demanding Eucalyptus to high-N-demanding Casuarina.