931 resultados para antenna feeds
Resumo:
Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.
Resumo:
The objective of this study was to identify a suitable alternative to the current practice of complementing the feeding of whole milk with straw. The influence of 3 different solid supplements on the health and performance of Swiss veal calves was investigated during 3 production cycles of 90 veal calves each with a mean initial age of 42 days and a mean initial weight of 68.7 kg. The calves were housed in groups of 30 in stalls strewn with wheat straw without outside pen. Liquid feeding consisted of whole milk combined with an additional skim milk powder ad libitum. Groups were assigned to one of the three following experimental solid feeds provided ad libitum: Pellet mix (composition: oat hulls, corn [whole plant], barley, sunflower seeds, squeezed grains of corn, molasses and a pellet binder), whole plant corn pellets, and wheat straw as control. Calves of the straw group showed significantly more abomasal lesions in the fundic part as compared to the pellet mix and corn pellets groups (P < 0.001), the prevalence of insufficient papillae was highest (P < 0.05), and ruminating behavior was unsatisfactory. In contrast to the pellet mix and straw groups, performance of calves in the corn pellets group was good. Additionally, prevalence of abomasal fundic lesions was lowest (P < 0.001), and rumen development was best in calves of the corn pellets group (P < 0.01). As in part I, the results reveal that whole-plant corn pellets are most consistent with an optimal result combining the calves' health and fattening performance. Therefore, it can be recommended as a solid supplement for veal calves basically fed whole milk under Swiss conditions.
Resumo:
The objective of this study was to identify a suitable alternative to the current practice of complementing the feeding of milk by-products with straw. The influence of 5 different types of solid feeds on health and performance of Swiss veal calves was investigated in 2 production cycles of 200 veal calves each with a mean initial age of 40 days (d). The calves were housed in groups of 40 in stalls with outside pen. Liquid feeding consisted of a milk by-product combined with an additional skim milk powder ad libitum. Groups were assigned to 1 of the 5 following experimental solid feeds provided ad libitum: mix (composition: soy flakes, corn, barley, wheat, oat, barley middling, plant oil, molasses), whole plant corn pellets, corn silage, hay, and wheat straw as control. Daily dry matter intake per calf averaged 2.25 kg of the liquid food, 0.16 kg of straw, 0.33 kg of mix, 0.47 kg of corn silage, 0.38 kg of corn pellets, and 0.39 kg of hay. No significant differences (P > 0.05) among groups were found in calf losses that amounted to 4.8 % (68 % because of gastrointestinal disorders). Four percent of the calves were slaughtered prematurely. Daily doses of antibiotics were higher in the mix (36.9 d, P < 0.01) and in the corn silage groups (35 d, P < 0.01) compared to control. Compared to the 4 other groups, calves of the straw group showed the highest prevalence of abnormal ruminal content (73 %, P < 0.05), of abnormal ruminal papillae (42 %, P < 0.05), of abomasal fundic lesions (13.5 %, P < 0.1), and the lowest number of chewing movements per bolus (45, P < 0.05). The hemoglobin concentration averaged 85 g/l at the beginning and 99 g/l at the end of the fattening period with no significant differences among groups (P > 0.1). The duration of the fattening period averaged 114 d, slaughter age 157 d, and carcass weight 122 kg. The average daily weight gain (ADG) was highest in the control group straw (1.35 kg), and lowest in the hay group (1.22 kg, P < 0.01). The number of carcasses classified as C, H, and T (very high to medium quality) was lower in the hay group compared to straw (P < 0.01). No significant differences between groups were found in meat color (P > 0.1): 73 % of the carcasses were assessed as pale (267/364), 18 % as pink (66/364), and 9 % (31/364) as red. The results reveal that whole-plant corn pellets are most consistent with an optimal result combining the calves' health and fattening performance. Therefore, it can be recommended as an additional solid feed for veal calves under Swiss conditions.
Resumo:
A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
We present a conceptual prototype model of a focal plane array unit for the STEAMR instrument, highlighting the challenges presented by the required high relative beam proximity of the instrument and focus on how edge-diffraction effects contribute to the array's performance. The analysis was carried out as a comparative process using both PO & PTD and MoM techniques. We first highlight general differences between these computational techniques, with the discussion focusing on diffractive edge effects for near-field imaging reflectors with high truncation. We then present the results of in-depth modeling analyses of the STEAMR focal plane array followed by near-field antenna measurements of a breadboard model of the array. The results of these near-field measurements agree well with both simulation techniques although MoM shows slightly higher complex beam coupling to the measurements than PO & PTD.
Resumo:
In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.
Resumo:
We report discovery of a new efficient and robust antenna composite for light harvesting. The organic dye hostasol red (HR) is strongly luminescent in aprotic solvents but only weakly luminescent in potassium zeolite L (ZL) at ambient conditions. We observed a dramatic increase of the luminescence quantum yield of HR–ZL composites if some or all exchangeable potassium cations of ZL are substituted by an organic imidazolium cation (IMZ+) and if the acceptor HR is embedded in the middle part of the channels, so that it is fully protected by the environment of the perylene dye tb-DXP. This led to the discovery of a highly efficient donor,acceptor-ZL antenna material where tb-DXP acts as donor and HR acts as acceptor. The material has a donor-to-acceptor (D/A) absorption ratio of more than 100:1 and a nearly quantitative FRET efficiency. Synthesis of this host–guest material is reported. We describe a successful procedure for achieving full sealing of the ZL channel entrances such that the guests cannot escape. This new material is of great interest for applications in luminescent solar concentrator (LSC) devices because the efficiency killing self-absorption is very low.