775 resultados para agent based modeling
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
Postprint
Resumo:
Peer reviewed
Resumo:
[EN]In this paper we will present Eldi, a mobile robot that has been in daily operation at the Elder Museum of Science and Technology at Las Palmas de Gran Canaria since December 1999. This is an ongoing project that was organized in three di erent stages, describing here the one that has been accomplished. The initial phase, termed \The Player", the second stage, actually under development, has been called "The Cicerone" and in a nal phase, termed \The Vagabond", Eldi will be allowed to move erratically across the Museum. This paper will focus on the accomplished rst stage to succinctly describe the physical robot and the environment and demos developed. Finally we will summarize some important lessons learnt.
Resumo:
Normal grain growth of calcite was investigated by combining grain size analysis of calcite across the contact aureole of the Adamello pluton, and grain growth modeling based on a thermal model of the surroundings of the pluton. In an unbiased model system, i.e., location dependent variations in temperature-time path, 2/3 and 1/3 of grain growth occurs during pro- and retrograde metamorphism at all locations, respectively. In contrast to this idealized situation, in the field example three groups can be distinguished, which are characterized by variations in their grain size versus temperature relationships: Group I occurs at low temperatures and the grain size remains constant because nano-scale second phase particles of organic origin inhibit grain growth in the calcite aggregates under these conditions. In the presence of an aqueous fluid, these second phases decay at a temperature of about 350 °C enabling the onset of grain growth in calcite. In the following growth period, fluid-enhanced group II and slower group III growth occurs. For group II a continuous and intense grain size increase with T is typical while the grain growth decreases with T for group III. None of the observed trends correlate with experimentally based grain growth kinetics, probably due to differences between nature and experiment which have not yet been investigated (e.g., porosity, second phases). Therefore, grain growth modeling was used to iteratively improve the correlation between measured and modeled grain sizes by optimizing activation energy (Q), pre-exponential factor (k0) and grain size exponent (n). For n=2, Q of 350 kJ/mol, k0 of 1.7×1021 μmns−1 and Q of 35 kJ/mol, k0 of 2.5×10-5 μmns−1 were obtained for group II and III, respectively. With respect to future work, field-data based grain growth modeling might be a promising tool for investigating the influences of secondary effects like porosity and second phases on grain growth in nature, and to unravel differences between nature and experiment.
Resumo:
The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.
Resumo:
This study is about the comparison of simulation techniques between Discrete Event Simulation (DES) and Agent Based Simulation (ABS). DES is one of the best-known types of simulation techniques in Operational Research. Recently, there has been an emergence of another technique, namely ABS. One of the qualities of ABS is that it helps to gain a better understanding of complex systems that involve the interaction of people with their environment as it allows to model concepts like autonomy and pro-activeness which are important attributes to consider. Although there is a lot of literature relating to DES and ABS, we have found none that focuses on exploring the capability of both in tackling the human behaviour issues which relates to queuing time and customer satisfaction in the retail sector. Therefore, the objective of this study is to identify empirically the differences between these simulation techniques by stimulating the potential economic benefits of introducing new policies in a department store. To apply the new strategy, the behaviour of consumers in a retail store will be modelled using the DES and ABS approach and the results will be compared. We aim to understand which simulation technique is better suited to human behaviour modelling by investigating the capability of both techniques in predicting the best solution for an organisation in using management practices. Our main concern is to maximise customer satisfaction, for example by minimising their waiting times for the different services provided.
Resumo:
We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development.
Resumo:
Discrete Event Simulation (DES) is a very popular simulation technique in Operational Research. Recently, there has been the emergence of another technique, namely Agent Based Simulation (ABS). Although there is a lot of literature relating to DES and ABS, we have found less that focuses on exploring the capabilities of both in tackling human behaviour issues. In order to understand the gap between these two simulation techniques, therefore, our aim is to understand the distinctions between DES and ABS models with the real world phenomenon in modelling and simulating human behaviour. In achieving the aim, we have carried out a case study at a department store. Both DES and ABS models will be compared using the same problem domain which is concerning on management policy in a fitting room. The behaviour of staffs while working and customers’ satisfaction will be modelled for both models behaviour understanding.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. We apply agent-based simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Our multi-disciplinary research team draws upon expertise from work psychologists and computer scientists. Our research so far has led us to conduct case study work with a top ten UK retailer. Based on our case study experience and data we are developing a simulator that can be used to investigate the impact of management practices (e.g. training, empowerment, teamwork) on customer satisfaction and retail productivity.
Resumo:
Agent-based modelling and simulation offers a new and exciting way of understanding the world of work. In this paper we describe the development of an agent-based simulation model, designed to help to understand the relationship between human resource management practices and retail productivity. We report on the current development of our simulation model which includes new features concerning the evolution of customers over time. To test some of these features we have conducted a series of experiments dealing with customer pool sizes, standard and noise reduction modes, and the spread of the word of mouth. Our multidisciplinary research team draws upon expertise from work psychologists and computer scientists. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents offer potential for fostering sustainable organisational capabilities in the future.
Resumo:
In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methods. In a second step a multi-scenario experiment was carried out to study the behaviour of the models when they are used for the purpose of operational improvement. Overall we have found that for our case study example both, discrete event simulation and agent based simulation have the same potential to support the investigation into the efficiency of implementing new management policies.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
This paper explores the role of information and communication technologies in managing risk and early discharge patients, and suggests innovative actions in the area of E-Health services. Treatments of chronic illnesses, or treatments of special needs such as cardiovascular diseases, are conducted in long-stay hospitals, and in some cases, in the homes of patients with a follow-up from primary care centre. The evolution of this model is following a clear trend: trying to reduce the time and the number of visits by patients to health centres and derive tasks, so far as possible, toward outpatient care. Also the number of Early Discharge Patients (EDP) is growing, thus permiting a saving in the resources of the care center. The adequacy of agent and mobile technologies is assessed in light of the particular requirements of health care applications. A software system architecture is outlined and discussed. The major contributions are: first, the conceptualization of multiple mobile and desktop devices as part of a single distributed computing system where software agents are being executed and interact from their remote locations. Second, the use of distributed decision making in multiagent systems, as a means to integrate remote evidence and knowledge obtained from data that is being collected and/or processed by distributed devices. The system will be applied to patients with cardiovascular or Chronic Obstructive Pulmonary Diseases (COPD) as well as to ambulatory surgery patients. The proposed system will allow to transmit the patient's location and some information about his/her illness to the hospital or care centre
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.