987 resultados para adipocyte potential for differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surface glycoprotein (VSG) that shields them from the immune system. The procyclic form, the first life-cycle stage to develop in the tsetse fly, replaces the VSG coat by procyclins; these proteins do not protect the parasite from lysis by serum components. Our study exploits the parasite-specific process of differentiation from bloodstream to procyclic forms to screen for potential drug candidates. Using transgenic trypanosomes with a reporter gene in a procyclin locus, we established a whole-cell assay for differentiation in a medium-throughput format. We screened 7,495 drug-like compounds and identified 28 hits that induced expression of the reporter and loss of VSG at concentrations in the low micromolar range. Small molecules that induce differentiation to procyclic forms could facilitate studies on the regulation of differentiation as well as serving as scaffolds for medicinal chemistry for new treatments for sleeping sickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human embryonic stem cells (hESCs) have the potential to differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and efficient manner. Recent developments in the field have showed some success in obtaining myogenic cells from hESCs through a mesenchymal stem cell (MSC)-like intermediate population. MSCs, which are an adult stem cell population typically derived from the bone marrow, are capable of generating multiple cell types including skeletal muscle. The aim of this study was to develop an efficient method that derives myoblasts from an MSC-like intermediate. To accomplish this goal, we first set out to isolate and expand the MSC-like intermediate from hESCs differentiated in vitro. Difficulties in reproducing published cell-differentiation methodologies, which represent a significant and familiar challenge in hESC research, are highlighted in this report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonist ligands for the nuclear receptor peroxisome proliferator-activated receptor-γ have been shown to induce terminal differentiation of normal preadipocytes and human liposarcoma cells in vitro. Because the differentiation status of liposarcoma is predictive of clinical outcomes, modulation of the differentiation status of a tumor may favorably impact clinical behavior. We have conducted a clinical trial for treatment of patients with advanced liposarcoma by using the peroxisome proliferator-activated receptor-γ ligand troglitazone, in which extensive correlative laboratory studies of tumor differentiation were performed. We report here the results of three patients with intermediate to high-grade liposarcomas in whom troglitazone administration induced histologic and biochemical differentiation in vivo. Biopsies of tumors from each of these patients while on troglitazone demonstrated histologic evidence of extensive lipid accumulation by tumor cells and substantial increases in NMR-detectable tumor triglycerides compared with pretreatment biopsies. In addition, expression of several mRNA transcripts characteristic of differentiation in the adipocyte lineage was induced. There was also a marked reduction in immunohistochemical expression of Ki-67, a marker of cell proliferation. Together, these data indicate that terminal adipocytic differentiation was induced in these malignant tumors by troglitazone. These results indicate that lineage-appropriate differentiation can be induced pharmacologically in a human solid tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During differentiation in vitro, embryonic stem (ES) cells generate progenitors for most hemato-lymphoid lineages. We studied the developmental potential of two ES cell subpopulations that share the fetal stem cell antigen AA4.1 but differ in expression of the lymphoid marker B220 (CD45R). Upon transfer into lymphoid deficient mice, the B220+ population generated a single transient wave of IgM+ IgD+ B cells but failed to generate T cells. In contrast, transfer of the B220− fraction achieved long-term repopulation of both T and B lymphoid compartments and restored humoral and cell-mediated immune reactions in the recipients. To assess the hemato-lymphopoietic potential of ES cell subsets in comparison to their physiological counterparts, cotransplantation experiments with phenotypically homologous subsets of fetal liver cells were performed, revealing a more potent developmental capacity of the latter. The results suggest that multipotential and lineage-committed lymphoid precursors are generated during in vitro differentiation of ES cells and that both subsets can undergo complete final maturation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function of the immune system is highly dependent on cellular differentiation and clonal expansion of antigen-specific lymphocytes. However, little is known about mechanisms that may have evolved to protect replicative potential in actively dividing lymphocytes during immune differentiation and response. Here we report an analysis of telomere length and telomerase expression, factors implicated in the regulation of cellular replicative lifespan, in human B cell subsets. In contrast to previous observations, in which telomere shortening and concomitant loss of replicative potential occur in the process of somatic cell differentiation and cell division, it was found that germinal center (GC) B cells, a compartment characterized by extensive clonal expansion and selection, had significantly longer telomeric restriction fragments than those of precursor naive B cells. Furthermore, it was found that telomerase, a telomere-synthesizing enzyme, is expressed at high levels in GC B cells (at least 128-fold higher than those of naive and memory B cells), correlating with the long telomeres in this subset of B cells. Finally, both naive and memory B cells were capable of up-regulating telomerase activity in vitro in response to activation signals through the B cell antigen receptor in the presence of CD40 engagement and/or interleukin 4. These observations suggest that a novel process of telomere lengthening, possibly mediated by telomerase, functions in actively dividing GC B lymphocytes and may play a critical role in humoral immune response by maintaining the replicative potential of GC and descendant memory B cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have discovered that cells derived from the skeletal muscle of adult mice contain a remarkable capacity for hematopoietic differentiation. Cells prepared from muscle by enzymatic digestion and 5-day in vitro culture were harvested, and 18 × 103 cells were introduced into each of six lethally irradiated recipients together with 200 × 103 distinguishable whole bone marrow cells. After 6 or 12 weeks, all recipients showed high-level engraftment of muscle-derived cells representing all major adult blood lineages. The mean total contribution of muscle cell progeny to peripheral blood was 56 ± 20% (SD), indicating that the cultured muscle cells generated approximately 10- to 14-fold more hematopoietic activity than whole bone marrow. When bone marrow from one mouse was harvested and transplanted into secondary recipients, all recipients showed high-level multilineage engraftment (mean 40%), establishing the extremely primitive nature of these stem cells. We also show that muscle contains a population of cells with several characteristics of bone marrow-derived hematopoietic stem cells, including high efflux of the fluorescent dye Hoechst 33342 and expression of the stem cell antigens Sca-1 and c-Kit, although the cells lack the hematopoietic marker CD45. We propose that this population accounts for the hematopoietic activity generated by cultured skeletal muscle. These putative stem cells may be identical to muscle satellite cells, some of which lack myogenic regulators and could be expected to respond to hematopoietic signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many homeobox genes control essential developmental processes in animals and plants. In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce). The sequence shows distinct similarities specifically to the KNOX (knotted-like homeobox) class of homeobox genes known from different angiosperm plants. The deduced amino acid sequence of HBK1 is strikingly similar within the homeodomain (84% identical) to the maize gene Knotted1 (Kn1), which acts to regulate cell differentiation in the shoot meristem. This similarity suggested that the phylogenetic association of HBK1 with the KNOX genes might be coupled to a conservation of gene function. In support of this suggestion, we have found HBK1 to be expressed in the apical meristem in the central population of nondifferentiated stem cells, but not in organ primordia developing at the flanks of the meristem. This pattern of expression is similar to that of Kn1 in the maize meristem. We show further that HBK1, when expressed ectopically in transgenic Arabidopsis plants, causes aberrations in leaf development that are similar to the effects of ectopic expression of angiosperm KNOX genes on Arabidopsis development. Taken together, these data suggest that HBK1 has a role, similar to the KNOX genes in angiosperms, in the control of cellular differentiation in the apical meristem of spruce. The data also indicate that KNOX-gene regulation of vegetative development is an ancient feature of seed plants that was present in the last common ancestor of conifers and angiosperms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Euplotes crassus, most of the micronuclear genome is eliminated during formation of a transcriptionally active macronucleus. To understand how this is mediated throughout the genome, we have examined the chromatin structure of the macronucleus-destined sequences and Tec transposons, which are dispersed in 15,000 copies in the micronuclear genome and completely eliminated during formation of the macronuclear genome. Whereas the macronucleus-destined sequences show a typical pattern of nucleosomal repeats in micrococcal nuclease digests, the Tec element chromatin structure digests to a nucleosome-like repeat pattern that is not typical: the minimum digestion products are ∼300–600 base pairs, or “subnucleosomal,” in size. In addition, the excised, circular forms of the Tec elements are exceedingly resistant to nucleases. Nevertheless, an underlying nucleosomal structure of the Tec elements can be demonstrated from the size differences between repeats in partial micrococcal nuclease digests and by trypsin treatment of nuclei, which results in mononucleosome-sized products. Characterization of the most micrococcal nuclease–resistant DNA indicates that micronuclear telomeres are organized into a chromatin structure with digestion properties identical to those of the Tec elements in the developing macronucleus. Thus, these major repetitive sequence components of the micronuclear genome differ in their chromatin structure from the macronuclear-destined sequences during DNA elimination. The potential role of developmental stage–specific histone variants in this chromatin differentiation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinal cord neuronal restricted progenitor (NRP) cells, when transplanted into the neonatal anterior forebrain subventricular zone, migrate to distinct regions throughout the forebrain including the olfactory bulb, frontal cortex, and occipital cortex but not to the hippocampus. Their migration pattern and differentiation potential is distinct from anterior forebrain subventricular zone NRPs. Irrespective of their final destination, NRP cells do not differentiate into glia. Rather they synthesize neurotransmitters, acquire region-specific phenotypes, and receive synapses from host neurons after transplantation. Spinal cord NRPs express choline acetyl transferase even in regions where host neurons do not express this marker. The restricted distribution of transplanted spinal cord NRP cells and their acquisition of varied region-specific phenotypes suggest that their ultimate fate and phenotype is dictated by a combination of intrinsic properties and extrinsic cues from the host.