836 resultados para additive layer manufacturing
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
Modern factories are complex systems where advances in networking and information technologies are opening new ways towards higher efficiency. Such move is being driven by market rules with ever-increasing competition levels, in search for faster time-to-market, improved process yield, non-stop operations, flexible manufacturing and tighter supply-chain coupling. All these aims present a common requirement, i.e. a realtime flow of information, from the plant-floor up to the management, maintenance, suppliers and clients, to support accurate monitoring and control of the factory. This stresses the importance achieved by the communication infrastructure in modern manufacturing industry. This paper presents the authors view concerning the current trends in modern factory communication systems. It addresses the problems of seamlessly integrating different information flows with diverse requirements, mainly in terms of timeliness. In this aspect, the debate between event-triggered and time-triggered communication is revisited as well as the joint support for both types of traffic. Finally, a view of where factory communication systems are moving to is also presented, showing the impact of open and widely available technologies.
Resumo:
The integration of wired and wireless technologies in modern manufacturing plants is now of paramount importance for the competitiveness of any industry. Being PROFIBUS the most widely used technology in use for industrial communications, several solutions have been proposed to provide PROFIBUS networks with wireless communications. One of them, the bridge-based hybrid wired/wireless PROFIBUS network approach, proposes an architecture in which the Intermediate Systems operate at Data Link Layer level, as bridges. In this paper, we propose an architecture for the implementation of such a bridge and the required protocols to handle communication between stations in different domains and the mobility of wireless stations.
Resumo:
Within the European project R-Fieldbus (http://www.hurray.isep.ipp.pt/activities/rfieldbus/), an industrial manufacturing field trial was developed. This field trial was conceived as a demonstration test bed for the technologies developed during the project. Because the R-Fieldbus field trial included prototype hardware devices, the purpose of this equipment changed and since the conclusion of the project, several new technologies also emerged, therefore an update of the field trial was required. This document describes an update of the manufacturing field trial. The purpose of this update, the changes and improvements introduced are described in the document. Additionally, this document also provides a reliable source of documentation for the equipment, configuration and software components of the manufacturing field trial.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
Global restructuring processes have not only strong implications for European working and living realities, but also have specific outcomes with regard to gender relations. The following contribution analyses in which way global restructuring shapes current gender relations in order to identify important trends and developments for future gender (in)equalities at the workplace. On the basis of a large qualitative study on global restructuring and impacts on different occupational groups it argues that occupational belonging in line with skill and qualification levels are crucial factors to assess the further development of gender relations at work. Whereas global restructuring in knowledge-based occupations may provide new opportunities for female employees, current restructuring is going to deteriorate female labour participation in service occupations. In contrast, manufacturing occupations can be characterised by persistent gender relations, which do not change in spite of major restructuring processes at the work place. Taking the institutional perspective into account, it seems to be crucial to integrate the occupational perspective in order to apply adequate policy regulations to prevent the reinforcement of gender related working patterns in the near future.
Resumo:
More than ever, the economic globalization is creating the need to increase business competitiveness. Lean manufacturing is a management philosophy oriented to the elimination of activities that do not create any type of value and are thus considered a waste. One of the main differences from other management philosophies is the shop-floor focus and the operators' involvement. Therefore, the training of all organization levels is crucial for the success of lean manufacturing. Universities should also participate actively in this process by developing students' lean management skills and promoting a better and faster integration of students into their future organizations. This paper proposes a single realistic manufacturing platform, involving production and assembly operations, to learn by playing many of the lean tools such as VSM, 5S, SMED, poke-yoke, line balance, TPM, Mizusumashi, plant layout, and JIT/kanban. This simulation game was built in tight cooperation with experienced lean companies under the international program “Lean Learning Academy,”http://www.leanlearningacademy.eu/ and its main aim is to make bachelor and master courses in applied sciences more attractive by integrating classic lectures with a simulated production environment that could result in more motivated students and higher study yields. The simulation game results show that our approach is efficient in providing a realistic platform for the effective learning of lean principles, tools, and mindset, which can be easily included in course classes of less than two hours.
Resumo:
Worldwide competitiveness poses enormous challenges on managers, demanding a continuous quest to increase rationality in the use of resources. As a management philosophy, Lean Manufacturing focuses on the elimination of activities that do not create any type of value and therefore are considered waste. For companies to successfully implement the Lean Manufacturing philosophy it is crucial that the human resources of the organization have the necessary training, for which proper tools are required. At the same time, higher education institutions need innovative tools to increase the attractiveness of engineering curricula and develop a higher level of knowledge among students, improving their employability. This paper describes how Lean Learning Academy, an international collaboration project between five EU universities and five companies, from SME to Multinational/Global companies, developed and applied an innovative training programme for Engineers on Lean Manufacturing, a successful alternative to the traditional teaching methods in engineering courses.
Resumo:
Commonly, when a weblab is developed to support remote experiments in sciences and engineering courses, a particular hardware/software architecture is implemented. However, the existence of several technological solutions to implement those architectures difficults the emergence of a standard, both at hardware and software levels. While particular solutions are adopted assuming that only qualified people may implement a weblab, the control of the physical space and the power consumption are often forgotten. Since controlling these two previous aspects may increase the quality of the weblab hosting the remote experiments, this paper proposes the useof a new layer implemented by a domotic system bus with several devices (e.g. lights, power sockets, temperature sensors, and others) able to be controlled through the Internet. We also provide a brief proof-of-concept in the form of a weblab equipped with a simple domotic system usually implemented in smart houses. The added value to the remote experiment hosted at the weblab is also identified in terms of power savings and environment conditions.
Resumo:
In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.
Resumo:
A área da simulação computacional teve um rápido crescimento desde o seu apareciment, sendo actualmente uma das ciências de gestão e de investigação operacional mais utilizadas. O seu princípio baseia-se na replicação da operação de processos ou sistemas ao longo de períodos de tempo, tornando-se assim uma metodologia indispensável para a resolução de variados problemas do mundo real, independentemente da sua complexidade. Das inúmeras áreas de aplicação, nos mais diversos campos, a que mais se destaca é a utilização em sistemas de produção, onde o leque de aplicações disponível é muito vasto. A sua aplicação tem vindo a ser utilizada para solucionar problemas em sistemas de produção, uma vez que permite às empresas ajustar e planear de uma maneira rápida, eficaz e ponderada as suas operações e os seus sistemas, permitindo assim uma rápida adaptação das mesmas às constantes mudanças das necessidades da economia global. As aplicações e packages de simulação têm seguindo as tendências tecnológicas pelo que é notório o recurso a tecnologias orientadas a objectos para o desenvolvimento das mesmas. Este estudo baseou-se, numa primeira fase, na recolha de informação de suporte aos conceitos de modelação e simulação, bem como a respectiva aplicação a sistemas de produção em tempo real. Posteriormente centralizou-se no desenvolvimento de um protótipo de uma aplicação de simulação de ambientes de fabrico em tempo real. O desenvolvimento desta ferramenta teve em vista eventuais fins pedagógicos e uma utilização a nível académico, sendo esta capaz de simular um modelo de um sistema de produção, estando também dotada de animação. Sem deixar de parte a possibilidade de integração de outros módulos ou, até mesmo, em outras plataformas, houve ainda a preocupação acrescida de que a sua implementação recorresse a metodologias de desenvolvimento orientadas a objectos.
Resumo:
As estruturas coladas são geralmente projetadas para que o adesivo seja essencialmente sujeito a esforços de corte, pois neste tipo de solicitação o adesivo apresenta melhores caraterísticas mecânicas. A avaliação do comportamento ao corte pode ser realizada com o adesivo no estado maciço ou como camada fina em juntas adesivas. Os métodos que permitem avaliar o comportamento ao corte, quer para o adesivo, quer para as juntas, são: o ensaio Iosipescu ou V-Notched beam shear method, o ensaio de borboleta ou Notched plate shear method (Arcan), o ensaio de torsão, o ensaio de tração numa junta de sobreposição simples e o ensaio Thick Adherend Shear Test (TAST). Os ensaios Arcan e Iosipescu, tal como o ensaio de torção, podem ser realizados em provetes de adesivo maciço ou em juntas. O ensaio de torção é pouco utilizado, porque a aplicação do esforço de corte exige dispositivos e equipamentos de ensaios complexos. Os ensaios Arcan e Iosipescu utilizam provetes com entalhes e podem introduzir alguma dificuldade na medição precisa das deformações. O ensaio de tração numa junta de sobreposição simples é um dos métodos mais usados para caraterizar uma junta adesiva, porque é um método simples, as juntas são de fácil fabrico e pode ser realizado em máquinas universais de ensaios mecânicos. Neste ensaio os aderentes estão sujeitos a uma solicitação de tração, enquanto a camada de adesivo está sujeita a esforços de corte combinados com esforços de arrancamento. Os esforços de arrancamento resultam da própria geometria da junta na qual existe um desalinhamento das forças de tração, mesmo quando são colocados calços (reguladores de espessura) nos locais de amarração. O ensaio TAST é dos mais populares para obtenção das propriedades ao corte, uma vez que tanto as ferramentas de ensaio como o fabrico dos provetes são relativamente simples. Este ensaio é realizado em junta sendo os substratos espessos e de aço que, devido à sua elevada rigidez, contribuem para um esforço de corte praticamente puro no adesivo. Neste trabalho realizou-se o projeto e a fabricação das ferramentas, gabarit e substratos necessários para a execução de provetes TAST e ensaios utilizando diferentes adesivos.
Resumo:
Pultruded products are being targeted by a growing demand due to its excellent mechanical properties and low chemical reactivity, ensuring a low level of maintenance operations and allowing an easier assembly operation process than equivalent steel bars. In order to improve the mechanical drawing process and solve some acoustic and thermal insulation problems, pultruded pipes of glass fibre reinforced plastics (GFRF) can be filled with special products that increase their performance regarding the issues previously referred. The great challenge of this work was drawing a new equipment able to produce pultruded pipes filled with cork or polymeric pre-shaped bars as a continuous process. The project was carried out successfully and the new equipment was built and integrated in the pultrusion equipment already existing, allowing to obtain news products with higher added-value in the market, covering some needs previously identified in the field of civil construction.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Risk assessment is one of the main pillars of the framework directive and other directives in respect of health and safety. It is also the basis of an effective management of safety and health as it is essential to reduce work-related accidents and occupational diseases. To survey the hazards eventually present in the workplaces the usual procedures are i) gathering information about tasks/activities, employees, equipment, legislation and standards; ii) observation of the tasks and; iii) quantification of respective risks through the most adequate risk assessment among the methodologies available. From this preliminary evaluation of a welding plant and, from the different measurable parameters, noise was considered the most critical. This paper focus not only the usual way of risk assessment for noise but also another approach that may allow us to identify the technique with which a weld is being performed.