998 resultados para adaptive antennas
Resumo:
Scalable video coding (SVC) is an emerging standard built on the success of advanced video coding standard (H.264/AVC) by the Joint video team (JVT). Motion compensated temporal filtering (MCTF) and Closed loop hierarchical B pictures (CHBP) are two important coding methods proposed during initial stages of standardization. Either of the coding methods, MCTF/CHBP performs better depending upon noise content and characteristics of the sequence. This work identifies other characteristics of the sequences for which performance of MCTF is superior to that of CHBP and presents a method to adaptively select either of MCTF and CHBP coding methods at the GOP level. This method, referred as "Adaptive Decomposition" is shown to provide better R-D performance than of that by using MCTF or CRBP only. Further this method is extended to non-scalable coders.
Resumo:
Androgen deprivation and androgen targeted therapies (ATT) are established treatments for prostate cancer (PCa). Although initially effective, ATT induces an adaptive response that leads to treatment resistance. Increased expression of relaxin-2 (RLN2) is an important alteration in the adaptive response. RLN2 has a well described role in PCa cell proliferation, adhesion and tumour growth. The objectives of this study were to develop cell models for studies of RLN2 signalling and to implement in vitro assays for evaluating the therapeutic properties of the unique RLN2 receptor (RXFP1) antagonist
Resumo:
Fractal Minkowski curves to design a compact dual-frequency microstrip ring antenna are proposed. Sides of a square ring have been selectively replaced with first and second iterations of the generalised fractal geometry to design a smaller antenna with dual-frequency operation. This behaviour has been explained based on current distributions on the antenna structure. Measured results compare well with electromagnetic simulations.
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications.
Resumo:
Micromachined antennas are recieving great interest as carrier frequencies move higher into the frequency spectrum due to their superior performance and amenability for integration with active devices. However their design is cumbersome owing to the complexity of the structure. To overcome this, in this paper, an iterative procedure is suggested to facilitate fast design of micromachined patch antennas based on a simulation study. A microstrip line on a micromachined Silicon substrate is simulated in a full wave simulator by solving for the ports only. From the obtained propagation constant, the effective dilectric constant for the micromachined substrate is estimated. The process is repeated for a number of values of the width of the microstrip and a plot is made for the variation of the effective dielectric constant with the microstrip width. Then an iterative method in combination with the extrapolated permittivity which includes the effect of cavity extensions in all the directions, is used to obtain the width and the corresponding effective dielectric constant. This method has been verified to be quite accurate by comparison with full wave simulations and hence it can function as a good starting point for designers to design micromachined antennas.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.
Resumo:
In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).
Resumo:
Impacts of climate change on hydrology are assessed by downscaling large scale general circulation model (GCM) outputs of climate variables to local scale hydrologic variables. This modelling approach is characterized by uncertainties resulting from the use of different models, different scenarios, etc. Modelling uncertainty in climate change impact assessment includes assigning weights to GCMs and scenarios, based on their performances, and providing weighted mean projection for the future. This projection is further used for water resources planning and adaptation to combat the adverse impacts of climate change. The present article summarizes the recent published work of the authors on uncertainty modelling and development of adaptation strategies to climate change for the Mahanadi river in India.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.