871 resultados para acute lung injury
Resumo:
Background: Extracorporeal circulation (ECC), the diversion of blood flow through a circuit located outside of the body, has been one of the major advances in modern medicine. Cardio-pulmonary bypass (CPB), renal dialysis, apheresis and extracorporeal membrane oxygenation (ECMO) are all different forms of ECC. Despite its major benefits, when blood comes into contact with foreign material, both the coagulation and inflammation cascades are activated simultaneously. Short periods of exposure to ECC e.g. CPB (�2 h duration), are known to be associated with haemolysis, coagulopathies, bleeding and inflammation which demand blood product support. Therefore, it is not unexpected that these complications would be exaggerated with prolonged periods of ECC such as in ECMO (days to weeks duration). The variability and complexities of the underlying pathologies of patients requiring ECC makes it difficult to study the cause and effect of these complications. To overcome this problem we developed an ovine (sheep) model of ECC. Method: Healthy female sheep (1–3 y.o.) weighing 40–50 kg were fasted overnight, anaesthetised, intubated and ventilated [1]. Half the group received smoke induced acute lung injury (S-ALI group) (n = 8) and the other half did not (healthy group) (n = 8). Sheep were subsequently cannulated (Medtronic Inc, Minneapolis, MN, USA) and veno-venous ECMO commenced using PLS ECMO circuit and Quadrox D oxygenator (Maquet Cardiopulmonary AG, Hechinger Straße, Germany). There was continuous physiological monitoring and blood was collected at specified time intervals for full blood counts, platelet function analysis (by Multiplate®), routine coagulation and assessment of clot formation and lysis (by ROTEM®). Preliminary results Full blood counts and routine coagulation results from normal healthy sheep were comparable to those of normal human adults. Within 15 min of initiating of ECMO, PT, PTT and EXTEM clot formation time increased, whilst EXTEM maximum clot firmness decreased in both cohorts. Discussion & Conclusions: Preliminary results of sheep from both 2 h ECMO cohorts showed that the anatomy, haematology and coagulation parameters of an adult sheep are comparable to that a human adult. Experiments are currently underway with healthy (n = 8) and S-ALI (n = 8) sheep on ECMO for 24 h. In addition to characterising how ECMO alters haematology and coagulation parameters, we hope that it will also define which blood components will be most effective to correct bleeding or clotting complications during ECMO support.
Resumo:
Background Transfusion-related acute lung injury (TRALI) is a serious and potentially fatal consequence of transfusion. A two-event TRALI model demonstrated date-of-expiry - day (D) 5 platelet (PLT) and D42 packed red blood cell (PRBC) supernatants (SN) induced TRALI in LPS-treated sheep. We have adapted a whole blood transfusion culture model as an investigative bridge between the ovine TRALI model human responses to transfusion. Methods A whole blood transfusion model was adapted to replicate the ovine model - specifically +/- 0.23μg/mL LPS as the first event and 10% SN volume (transfusion) as the second event. Four pooled SN from blood products, previously used in the TRALI ovine model, were investigated: D1-PLT, D5-PLT, D1-PRBC, and D42-PRBC. Fresh human whole blood (recipient) was mixed with combinations of LPS and BP-SN stimuli and incubated in vitro for 6 hrs. Addition of golgi plug enabled measurement of monocyte cytokine production (IL-6, IL-8, IL-10, IL-12, TNF-α, IL-1α, CXCL-5, IP-10, MIP-1α, MCP-1) using multi-colour flow cytometry. Responses for 6 recipients were assessed. Results In the presence of LPS, D42-PRBC-SN significantly increased monocyte IL-6 (P=0.031), IL-8 (P=0.016) and IL-1α (P=0.008) production compared to D1-PRBC-SN. This response to D42-PRBC-SN was LPS-dependent, and was not evident in non-LPSstimulated controls. This response was also specific to D42-PRBC-SN, as similar changes were not evident for the D5-PLT-SN, compared to the D1-PLT-SN, regardless of the presence of LPS. D5-PLT-SN significantly increased IL-12 production (P=0.024) compared to D1-PLT-SN. This response was again LPS-dependent. Conclusions These data demonstrate a novel two-event mechanism of monocyte inflammatory response that was dependent upon both the presence of date-of-expiry blood product SN and LPS. Further, these results demonstrate different cytokines responses induced by date-of-expiry PLT-SN and PRBC-SN. These data are consistent with the evidence from the ovine TRALI model, and enhancing its relevance to transfusion related changes in humans.
Resumo:
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Resumo:
Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.
Resumo:
O objetivo do presente estudo foi investigar o envolvimento do estresse oxidativo na lesão pulmonar aguda (LPA) induzida por lipopolissacarídeo (LPS) e as repercussões inflamatórias, estruturais e funcionais, através de análises bioquímicas de estresse oxidativo, prova de função pulmonar, análise histológica e RT-PCR para citocinas e fatores de transcrição pró-inflamatórios. Na primeira etapa foram utilizados camundongos machos C57BL6 foram divididos em sete grupos: Grupo controle (CTR) (50 μL de solução fisiológica) administrados via intratraqueal [it], LPS 6 horas (10 μL de LPS) [it], LPS 12 horas (10 μL de LPS) [it], LPS 24 horas (10 μL de LPS) [i], LPS 48 horas (10 μL de LPS). Para verificar que as alterações observadas eram estresse oxidativo dependentes camundongos machos C57BL6 foram pré-tratados com N-acetilcisteína (NAC) 1 hora antes do estímulo com LPS e sacrifícados 24 horas depois do estímulo com LPS. Os animais foram divididos da seguinte forma: Grupo LPS 24 horas (10 μL) [it], grupo NAC 40 mg/kg (gavagem) + LPS (10 μL) [it] e grupo NAC 100 mg/kg (gavagem) + LPS (10 μL) [it]. O sistema antioxidante enzimático protegeu o pulmão do estresse oxidativo nas primeiras 12 horas. O estresse oxidativo foi caracterizado em 24 horas e em 48 horas observou-se falência do sistema antioxidante enzimático. Parâmetros de função pulmonar se mostraram alterados nos grupo estimulados com LPS principalmente no grupo LPS. A elastância (p<0,001), resistência de via aérea periférica (ΔP2) (p<0,001), resistência de via aérea central (ΔP1) (p<0,001) e resistência de via aérea total (ΔPtot) (p<0,001) se mostraram principlamente alteradas no grupo LPS 24 horas. O pré-tratamento com NAC impediu o aumento dos parâmetros de elastância (p<0,001), resistência de via aérea periférica (ΔP2) (p<0,001) resistência de via aérea central (ΔP1) (p<0,05) e resistência de via aérea total (ΔPtot) (p<0,001) comparado com o grupo LPS 24 horas. As alterações histológicas como espessamento de septo alveolar, influxo de células inflamatórias e hemorragia mostraram-se tempo dependentes. O pré-tratamento NAC impediu as alterações observadas nos grupo estimulados com LPS. Alterações inflamatórias foram observadas no grupo estimulado com LPS como IL-6 (p<0,001), iNOS (p<0,001), COX2 (p<0,05), TNF-α (p<0,001) e NFκB (p<0,001) quando comparados ao grupo controle. O pré-tratamento com NAC impediu o aumento desses parâmetros como IL-6 (p<0,001), iNOS (p<0,001), COX2 (p<0,05), TNF-α (p<0,05) e NFκB (p<0,001) quando comparados ao grupo LPS 24 horas. Nossos resultados sugerem que o estresse oxidativo desempenha um papel importante nas respostas inflamatórios, estruturais e funcionais no modelo de LPA induzido por LPS e que essas alterações são estresse oxidativo dependentes.
Resumo:
Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
Resumo:
Nosso objetivo foi determinar que tipo de estatina pode atenuar a lesão pulmonar aguda (LPA) induzida por lipopolissacarídeo (LPS) em camundongos da linhagem C57Bl/6. Trinta camundongos machos ( 23 g) foram divididos em 5 grupos (n=6 cada): grupo LPS (10 mg/kg) administrado intraperitonealmente (i.p.), LPS mais atorvastatina (10 mg/kg/dia; grupo LPS+A), LPS mais pravastatina (5 mg/kg/dia; grupo LPS+P) e LPS mais sinvastatina (20 mg/kg/dia; grupo LPS+S). O grupo controle recebeu salina i.p.. Em um grupo separado de camundongos (n=5), a soma das pressões pulmonares resistivas e viscoelásticas (DeltaPtot) e elastância estática (E[st]) foram medidas. Um dia após a administração de LPS os camundongos foram sacrificados (24 h) por deslocamento cervical e logo em seguida foi realizado lavado broncoalveolar (LBA). Os pulmões foram removidos para análise histopatológica e homogeneizados para análises bioquímicas (ELISA, catalase, superóxido dismutase, mieloperoxidase, substâncias reativas ao ácido tiobarbitúrico, carbonilação de proteínas e método de Griess). A quantidade de leucócitos foi menor no grupo LPS+P (p<0,01) e LPS+S (p<0,05) em comparação ao grupo LPS. Os níveis de MCP-1 e IL-6 reduziram no grupo LPS+P (p<0,01), enquanto o grupo LPS + S mostrou redução apenas nos níveis de IL-6 (p<0,05) em comparação ao grupo LPS. Marcadores redox (superóxido dismutase e catalase) foram menores no grupo LPS+A (p<0,01) em comparação ao grupo LPS. A peroxidação lipídica (malondialdeído e hidroperóxidos) diminuiu em todos os grupos tratados (p<0,05) quando comparados ao grupo LPS. A mieloperoxidase foi menor no grupo LPS+P (p<0,01) quando comparado ao grupo LPS. DeltaPtot e E(st) foram, significativamente, maiores no grupo LPS do que nos outros grupos. Nossos resultados sugerem que atorvastatina e pravastatina, mas não a sinvastatina, exibiram ações anti-inflamatórias e antioxidantes na LPA induzida por LPS.
Resumo:
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.
Resumo:
Background: Hypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappa B (NF-kappa B), a pivotal transcriptional regulator in inflammation and repair.
Resumo:
RATIONALE:
Simvastatin inhibits inflammatory responses in vitro and in murine models of lung inflammation in vivo. As simvastatin modulates a number of the underlying processes described in acute lung injury (ALI), it may be a potential therapeutic option.
OBJECTIVES:
To investigate in vivo if simvastatin modulates mechanisms important in the development of ALI in a model of acute lung inflammation induced by inhalation of lipopolysaccharide (LPS) in healthy human volunteers.
METHODS:
Thirty healthy subjects were enrolled in a double-blind, placebo-controlled study. Subjects were randomized to receive 40 mg or 80 mg of simvastatin or placebo (n = 10/group) for 4 days before inhalation of 50 microg LPS. Measurements were performed in bronchoalveolar lavage fluid (BALF) obtained at 6 hours and plasma obtained at 24 hours after LPS challenge. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) was measured in monocyte-derived macrophages.
MEASUREMENTS AND MAIN RESULTS:
Pretreatment with simvastatin reduced LPS-induced BALF neutrophilia, myeloperoxidase, tumor necrosis factor-alpha, matrix metalloproteinases 7, 8, and 9, and C-reactive protein (CRP) as well as plasma CRP (all P < 0.05 vs. placebo). There was no significant difference between simvastatin 40 mg and 80 mg. BALF from subjects post-LPS inhalation induced a threefold up-regulation in nuclear NF-kappaB in monocyte-derived macrophages (P < 0.001); pretreatment with simvastatin reduced this by 35% (P < 0.001).
CONCLUSIONS:
Simvastatin has antiinflammatory effects in the pulmonary and systemic compartment in humans exposed to inhaled LPS.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.
Resumo:
Rationale: Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. Objectives: Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. Methods: We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. Measurements and Main Results: Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. Conclusions: In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
Despite its high incidence and devastating outcomes, acute respiratory distress syndrome (ARDS) has no specific treatment, with effective therapy currently limited to minimizing potentially harmful ventilation and avoiding a positive fluid balance. Many pharmacological therapies have been investigated with limited success to date. In this review article we provide a state-of-the-art update on recent and ongoing trials, as well as reviewing promising future pharmacological therapies in ARDS.
Resumo:
BACKGROUND: Open AAA repair is associated with ischaemia-reperfusion injury where systemic inflammation and endothelial dysfunction can lead to multiple organ injury including acute lung injury. Oxidative stress plays a role that may be inhibited by ascorbic acid.
METHODS: A double blind, allocation concealed, randomized placebo-controlled trial was performed to test the hypothesis that a single bolus dose (2g) of intra-operative parenteral ascorbic acid would attenuate biomarkers of ischaemia-reperfusion injury in patients undergoing elective open AAA repair.
RESULTS: Thirty one patients completed the study; 18 received placebo and 13 ascorbic acid. Groups were comparable demographically. Open AAA repair caused an increase in urinary Albumin:Creatinine Ratio (ACR) as well as plasma IL-6 and IL-8. There was a decrease in exhaled breath pH and oxygenation. Lipid hydroperoxides were significantly higher in the ascorbic acid group following open AAA repair. There were no other differences between the ascorbic acid or placebo groups up to 4 hours after removal of the aortic clamping.
CONCLUSIONS: Open AAA repair caused an increase in markers of systemic endothelial damage and systemic inflammation. Administration of 2g parenteral ascorbic acid did not attenuate this response and with higher levels of lipid hydroperoxides post-operatively a pro-oxidant effect could not be excluded.
TRIAL REGISTRATION: ISRCTN27369400.