976 resultados para acoustic monitoring
Resumo:
While sensor networks have now become very popular on land, the underwater environment still poses some difficult problems. Communication is one of the difficult challenges under water. There are two options: optical and acoustic. We have designed an optical communication board that allows the Fleck’s to communicate optically. We have tested the resulting underwater sensor nodes in two different applications.
Resumo:
Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.
Resumo:
Background Despite being the leading cause of death and disability in the paediatric population, traumatic brain injury (TBI) in this group is largely understudied. Clinical practice within the paediatric intensive care unit (PICU) has been based upon adult guidelines however children are significantly different in terms of mechanism, pathophysiology and consequence of injury. Aim To review TBI management in the PICU and gain insight into potential management strategies. Method To conduct this review, a literature search was conducted using MEDLINE, PUBMED and The Cochrane Library using the following key words; traumatic brain injury; paediatric; hypothermia. There were no date restrictions applied to ensure that past studies, whose principles remain current were not excluded. Results Three areas were identified from the literature search and will be discussed against current acknowledged treatment strategies: Prophylactic hypothermia, brain tissue oxygen tension monitoring and decompressive craniectomy. Conclusion Previous literature has failed to fully address paediatric specific management protocols and we therefore have little evidence-based guidance. This review has shown that there is an emerging and ongoing trend towards paediatric specific TBI research in particular the area of moderate prophylactic hypothermia (MPH).
Resumo:
Previous work has established the effectiveness of systematically monitoring first year higher education students and intervening with those identified as at-risk of attrition. This nuts-and-bolts paper establishes an economic case for a systematic monitoring and intervention program, identifying the visible costs and benefits of such a program at a major Australian university. The benefit of such a program is measured in savings to the institution which would otherwise be lost revenue, in the form of retained equivalent full-time student load (EFTSL). The session will present an economic model based on a number of assumptions. These assumptions are explored along with the applicability of the model to other institutions.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
Resumo:
A vast amount of research into autonomous underwater navigation has, and is, being conducted around the world. However, typical research and commercial platforms have limited autonomy and are generally unable to navigate efficiently within coral reef environments without tethers and significant external infrastructure. This paper outlines the development and presents experimental results into the performance evaluation of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly lowcost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
This thesis discusses various aspects of the integrity monitoring of GPS applied to civil aircraft navigation in different phases of flight. These flight phases include en route, terminal, non-precision approach and precision approach. The thesis includes four major topics: probability problem of GPS navigation service, risk analysis of aircraft precision approach and landing, theoretical analysis of Receiver Autonomous Integrity Monitoring (RAIM) techniques and RAIM availability, and GPS integrity monitoring at a ground reference station. Particular attention is paid to the mathematical aspects of the GPS integrity monitoring system. The research has been built upon the stringent integrity requirements defined by civil aviation community, and concentrates on the capability and performance investigation of practical integrity monitoring systems with rigorous mathematical and statistical concepts and approaches. Major contributions of this research are: • Rigorous integrity and continuity risk analysis for aircraft precision approach. Based on the joint probability density function of the affecting components, the integrity and continuity risks of aircraft precision approach with DGPS were computed. This advanced the conventional method of allocating the risk probability. • A theoretical study of RAIM test power. This is the first time a theoretical study on RAIM test power based on the probability statistical theory has been presented, resulting in a new set of RAIM criteria. • Development of a GPS integrity monitoring and DGPS quality control system based on GPS reference station. A prototype of GPS integrity monitoring and DGPS correction prediction system has been developed and tested, based on the A USN A V GPS base station on the roof of QUT ITE Building.