969 resultados para Zirconium
Resumo:
In this work, we illustrate a simple chelation-based strategy to trigger DNA release from DNA-incorporated multilayer films, which were fabricated through the layer-by-layer (LbL) assembly of DNA and inorganic zirconium (IV) ion (Zr4+). After being incubated in several kinds of chelator solutions, the DNA multilayer films disassembled and released the incorporated DNA. This was most probably due to the cleavage of coordination/electrostatic interactions between Zr4+ and phosphate groups of DNA. Surface plasmon resonance (SPR), UV-vis spectrometry and atomic force microscopy (AFM) were used to characterize the assembly and the disassembly of the films.
Resumo:
A layer-by-layer film composed of DNA and inorganic zirconium ion (Zr4+) was fabricated on the surface of gold thin film, and an electric field triggered disintegration of the multilayer film was studied by using electrochemical surface plasmon resonance (EC-SPR). EC-SPR results demonstrated that the film was disassembled upon the application of an electric field and the disassembly rate varied with the applied potential, leading to the controlled release of DNA. The electrodissolution could be switched off by removing the electric potential and reactivated by reapplying the potential.
Resumo:
A series of novel titanium(IV) complexes combining a phosphine oxide-bridged bisphenolato ligand TiCl2{2,2'-O=P-R-3 (4-R-2-6-R-1-C6H2O)(2)}(THF) (6a: R-1 = tBu, R-2 - H, R-3 Ph; 6b: R-1 - Ph, R-2 = H, R-3 = Ph; 6c: R-1 = R-2 = tBu, R-3 = Ph; 6d: R-1 = R-2 cumyl, R-3 = Ph; 6e: R-1 = tBu, R-2 = H, R-3 = PhF5) were prepared by the reaction of corresponding bisphenolato ligands with TiCl4 in THF. X-ray analysis reveals that complex 6a adopts distorted octahedral geometry around the titanium center. These catalysts were performed for ethylene polymerization in the presence of modified methyaluminoxane (MMAO).
Resumo:
Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).
Resumo:
A series of new titanium complexes with two asymmetric bidentate beta-enaminoketonato (N,O) ligands (4b-t), [RN=CCF3)CHC(t-BU)O](2)TiCl2 (4b, R = -C6H4F(o); 4c, R = -C6H4F(m);4d, R = -C6H4F(p); 4e, R = - C6H3F2(2,3); 4f, R = -C6H3F2(2,4); 4g, R = -C6H3F2(2,5); 4h, R = -C6H3F2(2,6); 4i, R = -C6H3F2(3,4); 4j, R = -C6H3F2(3,5); 4k, R = -C6H2F3(2,3,4); 4l, R = -C6H2F3(3,4,5); 4m, R = -C6H4CF3(o); 4n, R =-C6H4CF3(m); 4o, R = -C6H4CF3(p); 4p, R = -C6H4Cl(p); 4q, R = -C6H4I(p); 4r, R = -C6H4NO2(P); 4s, R = -CH2C6H5; 4t, R = -C6H11), have been synthesized and characterized.
Resumo:
Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.
Resumo:
In this article, monodisperse spherical zirconia (ZrO2) particles with a narrow size distribution were prepared by the controlled hydrolysis of zirconium butoxide in ethanol, followed by heat treatment in air at low temperature from 300 to 500 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance were used to characterize the samples. The experimental results indicate that the annealed ZrO2 samples exhibit broad, intense visible photoluminescence. The annealing temperature is indispensable for the luminescence of the obtained ZrO2 particles. The emission colors of the ZrO2 samples can be tuned from blue to nearly white to dark orange by varying the annealing temperature.
Resumo:
A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.
Resumo:
Nanocrystalline Pb(Zr0.52Ti0.48)O-3 was prepared from lead acetate, zirconium oxynitrate and titanium tetra-n-butoxide by a sol-gel method. It is found that both the crystallization temperature of precursor PZT and PZT product size were increased with increase of V(C3H8O2)/V(H2O) ratio in solution used. At V(C3H8O2)/V(H2O) = 4.47 the gel was formed moderately quick, and the nanocrystalline PZT with uniform granularity and low crystallizing temperature could be obtained. The diameter of the final nanocrystalline was ranged 60similar to70 nm as measured by atomic force microscopy (AFM). The crystallizing temperature of the precursor PZT was 443degreesC and the crystallization reaction was completed at 500degreesC by DTA and TG. The sol-gel reaction process was monitored by FT-IR and XRD.
Resumo:
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.
Resumo:
New titanium complexes with two nonsymmetric bidentate beta-enaminoketonato (N,O) ligands (4a-e), [(Ph)NC(R-2)C(H)C(R-1)O](2)TiCl2, have been synthesized. X-ray crystal structure reveals that complex 4a has a C-2-symmetric conformation with a distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-e are active catalysts for ethylene polymerization at room temperature, producing high molecular weight polyethylenes bearing linear structures. The 4a,b/MMAO catalyst systems exhibit the characteristics of a quasi-living polymerization of ethylene, producing polyethylenes with narrow molecular weight distributions. Moreover, the 4a-d/MMAO catalyst systems are also capable of promoting the quasi-living copolymerization of ethylene with norbornene at room temperature, yielding high molecular weight alternating copolymers with narrow molecular weight distributions. The quasi-living nature of the catalysts allows the synthesis of new A-B polyethylene-block-poly(ethylene-conorbornene) diblock copolymer.