387 resultados para ZONATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 171B, a thick sequence of lower to middle Eocene sediments was recovered from Sites 1051 and 1052 at Blake Nose in the North Atlantic Ocean. Calcareous nannofossils are moderately well preserved in the upper to middle Eocene sediments but are moderate to poorly preserved in the lower Eocene sediments. Calcareous nannofossils are diverse throughout the recovered sequence, which extends from nannofossil Zone CP8 to Subzone CP15a. The nannofossil biostratigraphy of these sites indicates the presence of a hiatus in Subzone CP12a in the middle Eocene, in which the major nannofossil assemblage changes dramatically from Toweius to reticulofenestrid; however, no major change in the nannoflora was observed across the Eocene/Paleocene boundary. Coccolith size evolution patterns were recognized. Coccolithus, Reticulofenestra, and Cribrocentrum specimens may suggest a trend of increasing size upward through the sedimentary sequence, but Dictyococcites does not show a similar simple trend. Most traditional zonal markers are present. The reworking of Discoaster sublodoensis and overgrowth of Tribrachiatus in the lower Eocene makes zonal subdivision of this part of the sequence difficult. For this reason, tentative nannofossil zonation is given for the lower Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.