959 resultados para ZEBRAFISH EMBRYOS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Heck cyclisation approach is described for the rapid synthesis of a library of natural product-like small molecules, based on the phenanthridine core. The synthesis of a range of substituted benzylamine building blocks and their incorporation into the library is reported, together with a highly selective cis-dihydroxylation protocol that enables access to the target compounds in an efficient manner. Biological evaluation of the library using zebrafish phenotyping has led to the discovery of compound 20c, a novel inhibitor of early-stage zebrafish embryo development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conserved habenular neural circuit relays cognitive information from the forebrain into the ventral mid- and hindbrain. In zebrafish, the bilaterally formed habenulae in the dorsal diencephalon are made up of the asymmetric dorsal and symmetric ventral habenular nuclei, which are homologous to the medial and lateral nuclei respectively, in mammals. These structures have been implicated in various behaviors related to the serotonergic/dopaminergic neurotransmitter system. The dorsal habenulae develop adjacent to the medially positioned pineal complex. Their precursors differentiate into two main neuronal subpopulations which differ in size across brain hemispheres as signals from left-sided parapineal cells influence their differentiation program. Unlike the dorsal habenulae and despite their importance, the ventral habenulae have been poorly studied. It is not known which genetic programs underlie their development and why they are formed symmetrically, unlike the dorsal habenulae. A main reason for this lack of knowledge is that the vHb origin has remained elusive to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models.

APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish.

CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mest., Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas, Universidade do Algarve, Departamento de Ciências Biomédicas e Medicina, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências da Vida, do Mar, da Terra e do Ambiente (Nutrição), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organizer is a ciliated signalling transient organ, responsible for the patterning of embryo tissues during embryonic development. In higher vertebrates, such as mouse and chick, this organizer (the node and the Hensen’s node, respectively) performs dorsalventral and anteriorposterior axis definition, as well as left-right patterning of the internal organs. In lower vertebrates, such as frog and zebrafish, there is a separate specialized organ for left-right purposes called the Gastrocoel Roof Plate (GRP) and Kupffer’s Vesicle (KV), respectively. It is known that mouse and chick organizer cells give rise to structures like floor plate, notochord, hypochord and somites. Frog GRP originates all these but floor plate. In zebrafish, at 13-14 somite stage (ss) the KV finished its left-right patterning but what happens to this organizer’ cells is still poorly studied. This research attempts to understand the fate and behaviour of the KV cells. We followed the fate of KV cells by live imaging and by tight time-courses with fixed larvae. We assessed in detail their proliferative and death profile, as well as cilia length progression from 9-10 ss until 29-30 ss. We conclude that the KV cells mostly follow the evolutionarily conserved fates described for other organizers. These cells mainly incorporate the notochord and hypochord; few cells incorporate the floor plate and the somites. As a novelty, it is also hypothesized that the hypural cell fate may be among the KV cell fates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.