951 resultados para Yeast one-hybrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a search for regulatory proteins that interact with the leucine zipper motif of c-Fos in the yeast two-hybrid screen, we have identified a protein (FZA-B) that has extensive sequence similarity to SUG1 of Saccharomyces cerevisiae. Here we show that FZA-B can functionally substitute for SUG1 in yeast and that FZA-B interacts with Fos proteins in vitro through their leucine zippers. In rat liver and in HeLa cells, FZA-B is present in the 26S proteasome complex, as is c-Fos. Immobilized antibody raised against an FZA-B-specific peptide depleted peptidase activity, proteasomal proteins, FZA-B, and c-Fos from a 26S proteasome preparation. FZA-B is found predominantly in the nuclear fraction of COS cells expressing an FZA-B transgene and in the nuclear 26S proteasome of HeLa cells. We conclude that FZA-B is the mammalian homolog of SUG1 (mSug1) and that it is present in the nuclear 26S proteasome of cells. Our results suggest that mSug1 may be involved in the degradation of c-Fos and other transcription factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1 specifically interact in vitro and in yeast two-hybrid assays. Raf-1 and BAG-1 can also be coimmunoprecipitated from mammalian cells and from insect cells infected with recombinant baculoviruses encoding these proteins. Furthermore, bacterially-produced BAG-1 protein can increase the kinase activity of Raf-1 in vitro. BAG-1 also activates this mammalian kinase in yeast. These observations suggest that the Bcl-2 binding protein BAG-1 joins Ras and 14-3-3 proteins as potential activators of the kinase Raf-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The three-dimensional structure of protein kinase C interacting protein 1 (PKCI-1) has been solved to high resolution by x-ray crystallography using single isomorphous replacement with anomalous scattering. The gene encoding human PKCI-1 was cloned from a cDNA library by using a partial sequence obtained from interactions identified in the yeast two-hybrid system between PKCI-1 and the regulatory domain of protein kinase C-beta. The PKCI-1 protein was expressed in Pichia pastoris as a dimer of two 13.7-kDa polypeptides. PKCI-1 is a member of the HIT family of proteins, shown by sequence identity to be conserved in a broad range of organisms including mycoplasma, plants, and humans. Despite the ubiquity of this protein sequence in nature, no distinct function has been shown for the protein product in vitro or in vivo. The PKCI-1 protomer has an alpha+beta meander fold containing a five-stranded antiparallel sheet and two helices. Two protomers come together to form a 10-stranded antiparallel sheet with extensive contacts between a helix and carboxy terminal amino acids of a protomer with the corresponding amino acids in the other protomer. PKCI-1 has been shown to interact specifically with zinc. The three-dimensional structure has been solved in the presence and absence of zinc and in two crystal forms. The structure of human PKCI-1 provides a model of this family of proteins which suggests a stable fold conserved throughout nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Baculovirus inhibitors of apoptosis (IAPs) act in insect cells to prevent cell death. Here we describe three mammalian homologs of IAP, MIHA, MIHB, and MIHC, and a Drosophila IAP homolog, DIHA. Each protein bears three baculovirus IAP repeats and an N-terminal ring finger motif. Apoptosis mediated by interleukin 1beta converting enzyme (ICE), which can be inhibited by Orgyia pseudotsugata nuclear polyhedrosis virus IAP (OpIAP) and cowpox virus crmA, was also inhibited by MIHA and MIHB. As MIHB and MIHC were able to bind to the tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 in yeast two-hybrid assays, these results suggest that IAP proteins that inhibit apoptosis may do so by regulating signals required for activation of ICE-like proteases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adenovirus type 2/5 E1A proteins transform primary baby rat kidney (BRK) cells in cooperation with the activated Ras (T24 ras) oncoprotein. The N-terminal half of E1A (exon 1) is essential for this transformation activity. While the C-terminal half of E1A (exon 2) is dispensable, a region located between residues 225 and 238 of the 243R E1A protein negatively modulates in vitro T24 ras cooperative transformation as well as the tumorigenic potential of E1A/T24 ras-transformed cells. The same C-terminal domain is also required for binding of a cellular 48-kDa phosphoprotein, C-terminal binding protein (CtBP). We have cloned the cDNA for CtBP via yeast two-hybrid interaction cloning. The cDNA encodes a 439-amino acid (48 kDa) protein that specifically interacts with exon 2 in yeast two-hybrid, in vitro protein binding, and in vivo coimmunoprecipitation analyses. This protein requires residues 225-238 of the 243R E1A protein for interaction. The predicted protein sequence of the isolated cDNA is identical to amino acid sequences obtained from peptides prepared from biochemically purified CtBP. Fine mapping of the CtBP-binding domain revealed that a 6-amino acid motif highly conserved among the E1A proteins of various human and animal adenoviruses is required for this interaction. These results suggest that interaction of CtBP with the E1A proteins may play a critical role in adenovirus replication and oncogenic transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To identify proteins that regulate the transcriptional activity of c-Jun, we have used the yeast two-hybrid screen to detect mammalian polypeptides that might interact functionally with the N-terminal segment of c-Jun, a known regulatory region. Among the proteins identified is a short form of Stat3 (designated Stat3 beta). Stat3 beta is missing the 55 C-terminal amino acid residues of the long form (Stat3 alpha) and has 7 additional amino acid residues at its C terminus. In the absence of added cytokines, expression of Stat3 beta (but not Stat3 alpha) in transfected cells activated a promoter containing the interleukin 6 responsive element of the rat alpha 2-macroglobulin gene; coexpression of Stat3 beta and c-Jun led to enhanced cooperative activation of the promoter. Nuclear extracts of cells transfected with a Stat3 beta expression plasmid formed a complex with an oligonucleotide containing a Stat3 binding site, whereas extracts of cells transfected with a Stat3 alpha plasmid did not. We conclude that there is a short form of Stat3 (Stat3 beta), that Stat3 beta is transcriptionally active under conditions where Stat3 alpha is not, and that Stat3 beta and c-Jun are capable of cooperative activation of certain promoters.