851 resultados para Xenobiotics extrusion
Resumo:
"Available online 28 March 2016"
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Mussels (Mytilus edulis) were exposed to cultures of the toxic dinoflagellate Alexandrium fundyense or the non-toxic alga Rhodomonas sp. to evaluate the effects of the harmful alga on the mussels and to study recovery after discontinuation of the A. fundyense exposure. Mussels were exposed for 9 days to the different algae and then all were fed Rhodomonas sp. for 6 more days. Samples of hemolymph for hemocyte analyses and tissues for histology were collected before the exposure and periodically during exposure and recovery periods. Mussels filtered and ingested both microalgal cultures, producing fecal pellets containing degraded, partially degraded, and intact cells of both algae. Mussels exposed to A. fundyense had an inflammatory response consisting of degranulation and diapedesis of hemocytes into the alimentary canal and, as the exposure continued, hemocyte migration into the connective tissue between the gonadal follicles. Evidence of lipid peroxidation, similar to the detoxification pathway described for various xenobiotics, was found; insoluble lipofuchsin granules formed (ceroidosis), and hemocytes carried the granules to the alimentary canal, thus eliminating putative dinoflagellate toxins in feces. As the number of circulating hemocytes in A. fundyense-exposed mussels became depleted, mussels were immunocompromised, and pathological changes followed, i.e., increased prevalences of ceroidosis and trematodes after 9 days of exposure. Moreover, the total number of pathological changes increased from the beginning of the exposure until the last day (day 9). After 6 days of the exposure, mussels in one of the three tanks exposed to A. fundyense mass spawned; these mussels showed more severe effects of the toxic algae than non-spawning mussels exposed to A. fundyense. No significant differences were found between the two treatments during the recovery period, indicating rapid homeostatic processes in tissues and circulating hemocytes.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
Resumo:
Aggregating fetal liver cell cultures were tested for their ability to metabolize xenobiotics using ethoxycoumarin-O-deethylase (ECOD), as marker of phase I metabolism, and glutathione S-transferase (GST), as marker for phase II reactions. Significant basal activities, stable over 14 days in culture were measured for both ECOD and GST activities. The prototype cytochrome P450 inducers, 3-methylcholanthrene (3-MC) and phenobarbital (PB), increased ECOD and GST activities reaching an optimum 7 days after culturing, followed by a decline in activity. This decline was partially prevented by 1% dimethyl sulfoxide (DMSO) added chronically to the culture medium. DMSO was also found to induce ECOD activity and to a lesser extent GST activity. Furthermore, it potentiated in a dose-dependent manner the induction of ECOD by PB. The food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolically transformed through a number of pathways in vivo. It was therefore used to examine the metabolic capacity in fetal and adult liver cell aggregates. Metabolism of MeIQx was mainly through N2-conjugation, resulting in formation of the N2-glucuronide and sulfamate conjugates for non-induced fetal liver cells. These metabolites were also found in large amounts in non-induced adult liver cells. Low levels of cytochrome P450-mediated ring-hydroxylated metabolites were detected in both non-induced fetal and adult liver cells. After induction with arochlor (PCB) or 3-MC, the major pathway was ring-hydroxylation (cytochrome P450 dependent), followed by conjugation to beta-glucuronic or sulfuric acid. The presence of the glucuronide conjugate of N-hydroxy-MeIQx, a mutagenic metabolite, suggested an induction of P450 CYP1A2. The metabolism of MeIQx by liver cell aggregates is very similar to that observed in vivo and suggests that aggregating liver cell cultures are a useful model for in vitro metabolic studies in toxicology.
Resumo:
The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.
Resumo:
Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.
Resumo:
La cuticule des plantes, composée de cutine, un polyester lipidique complexe et de cires cuticulaires, couvre l'épiderme de la plupart des parties aériennes des plantes. Elle est constituée d'une barrière hydrophobique primaire qui minimise les pertes en eau et en soluté et protège l'organisme de différents stress environnementaux tels que les rayons UV, la dessiccation et l'infection par des pathogènes. Elle est aussi impliquée dans la délimitation des organes durant le développement. La cutine est un polyester qui, dans la plupart des espèces végétales, est principalement composé d'acides gras ω-hydroxylés composé de 16 à 18 carbones. Cependant, la cutine des feuilles d'Arabidopsis a une composition différente et est principalement constituée d'acides dicarboxyliques à 16-18 carbones. Les cires sont présentes dans le polyester de la cutine ou le recouvrent. Chez Arabidopsis, un nombre de mutants, tel que 1er, bdg, hth, att1, wbc11, et des plantes transgéniques avec différents changement dans la structure de la cuticule dans les feuilles et la tige, ont récemment été décrits et servent d'outils pour étudier la relation entre la structure et la fonction de la cuticule.7 mutants d'Arabidopsis ont été isolés par une méthode de coloration qui permet de détecter une augmentation dans la perméabilité cuticulaire. Ces mutants ont été appelés pec pour permeable cuticle.Pour la première partie de mon projet, j'ai principalement travaillé avec pec9/bre1 (permeable cuticle 9/botrytis resistance 1). PEC9/BRE1 a été identifié comme étant LACS2 (LONG CHAIN ACYL-CoA SYNTHETASE 2). Dans ce mutant, la cuticule n'est pas visible sous microscopie électronique et la quantité en acides gras omega- hydroxylés et en leurs dérivés est fortement réduite. Ces altérations conduisent à une plus grande perméabilité de la cuticule qui est mise en évidence par une plus grande sensibilité à la sécheresse et aux xénobiotiques et une coloration plus rapide par bleu de toluidine. Le mutant Iacs2 démontre aussi une grande capacité de résistance à l'infection du champignon nécrotrophique B. cinerea. Cette résistance est due à l'extrusion sur les feuilles d'un composé antifongique durant l'infection. Ce travail a été publié dans EMBO journal (Bessire et al., 2007, EMBO Journal).Mon second projet était principalement concentré sur pec1, un autre mutant isolé par le premier crible. La caractérisation de pec1 a révélé des phénotypes similaires à ceux de Iacs2, mais à chaque fois dans des proportions moindres : sensibilité accrue à la sécheresse et aux herbicides, plus grande perméabilité au bleu de toluidine et au calcofluor white, altération de la structure cuticulaire et résistance à B. cinerea à travers la même activité antifongique. PEC1 a été identifié comme étant AtPDR4. Ce gène code pour un transporteur ABC de la famille PDR ("Pleiotropic Drugs Resistance") qui sont des transporteurs ayants un large spectre de substrats. Le mutant se différencie de Iacs2, en cela que la composition en acides gras de la cuticule n'est pas autant altérée. C'est principalement le dihydroxypalmitate des fleurs dont la quantité est réduite. L'expression du gène marqué avec une GFP sous le contrôle du promoteur endogène a permis de localiser le transporteur au niveau de la membrane plasmique des cellules de l'épiderme, de manière polaire. En effet, la protéine est principalement dirigée vers l'extérieure de la plante, là où se trouve la cuticule, suggérant une implication d'AtPDR4 dans le transport de composants de la cuticule. Ce travail est actuellement soumis à Plant Cell.Une étude phylogénétique a aussi montré qu'AtPDR4 était très proche d'OsPDR6 du riz. Le mutant du riz a d'ailleurs montré des phénotypes de nanisme et de perméabilité similaire au mutant chez Arabidopsis.AbstractThe cuticle, consisting principally of cutin and cuticular waxes, is a hydrophobic layer of lipidic nature, which covers all aerial parts of plants and protects them from different abiotic and biotic stresses. Recently, the research in this area has given us a better understanding of the structure and the formation of the cuticle. The Arabidopsis mutants permeable cuticle 1 (peel) and botrytis resistance 1 (brel) were identified in two screens to identify permeable cuticles. The screens used the fluorescent dye calcofluor to measure permeability and also resistance to the fungal pathogen Botrytis. These mutants have highly permeable cuticle characteristics such as higher water loss, intake of chemicals through the cuticle, higher resistance to Botrytis cinerea infection, and organ fusion.BRE1 was cloned and found to be LACS2, a gene previously identified which is important in the formation and biosynthetic pathway of the cuticle. In brel, the amount of the major component of cutin in Arabidopsis leaves and stems, dicarboxylic acids, is five times lower than in the wild type. Moreover, the permeability of the cuticle allows the release of antifungal compounds at the leaf surface that inhibits the growth of two necrotrophic fungi: Botrytis cinerea and Sclerotinia sclerotiorum.PEC1 was identified as AtPDR4, a gene that codes for a plasma membrane transporter of the Pleiotropic Drug Resistance family, a sub-family of the ABC- transporters. AtPDR4 is strongly expressed in the epidermis of expanding tissues. In the epidermis it is located in a polar manner on the external plasma membrane, facing the cuticle. Analysis of the monomer composition of the cutin reveals that in this mutant the amount of hydroxy-acids and dihydroxy-palmitate is 2-3 times lower in flowers, in which organ these cutin monomers are the major components. Thus AtPDR4 is thought to function as a putative cutin monomer transporter.
Sensitive headspace gas chromatography analysis of free and conjugated 1-methoxy-2-propanol in urine
Resumo:
Glycol ethers still continue to be a workplace hazard due to their important use on an industrial scale. Currently, chronic occupational exposures to low levels of xenobiotics become increasingly relevant. Thus, sensitive analytical methods for detecting biomarkers of exposure are of interest in the field of occupational exposure assessment. 1-Methoxy-2-propanol (1M2P) is one of the dominant glycol ethers and the unmetabolized urinary fraction has been identified to be a good biological indicator of exposure. An existing analytical method including a solid-phase extraction and derivatization before GC/FID analysis is available but presents some disadvantages. We present here an alternative method for the determination of urinary 1M2P based on the headspace gas chromatography technique. We determined the 1M2P values by the direct headspace method for 47 samples that had previously been assayed by the solid-phase extraction and derivatization gas chromatography procedure. An inter-method comparison based on a Bland-Altman analysis showed that both techniques can be used interchangeably. The alternative method showed a tenfold lower limit of detection (0.1 mg/L) as well as good accuracy and precision which were determined by several urinary 1M2P analyses carried out on a series of urine samples obtained from a human volunteer study. The within- and between-run precisions were generally about 10%, which corresponds to the usual injection variability. We observed that the differences between the results obtained with both methods are not clinically relevant in comparison to the current biological exposure index of urinary 1M2P. Accordingly, the headspace gas chromatography technique turned out to be a more sensitive, accurate, and simple method for the determination of urinary 1M2P.[Authors]
Resumo:
Fission-track and (40)Ar/(39)Ar ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene.
Resumo:
Bowel diseases reveal the complex interplay of sensing and signalling pathways in maintaining healthy homeostasis of the intestine. Recent studies of the xenobiotic nuclear receptor, pregnane X receptor and the inflammatory mediator nuclear transcription factor kappaB (NF-kappaB) reveal a functional link between xenobiotic neutralization and inflammation and explain how certain xenobiotics can affect the immune response. Furthermore, another nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to produce beneficial effects in experimental inflammatory bowel diseases by repression of NF-kappaB thereby reducing inflammation, whilst its close relative PPAR beta/delta appears at a central position in signalling pathways involved in the progression of colon cancer. Recently accumulated knowledge on the action of these nuclear receptors and NF-kappaB in intestinal homeostasis may provide the rationale for the development of innovative treatment strategies with selective receptor modulators.
Resumo:
This review on intra-individual factors affecting drug metabolism completes our series on the biochemistry of drug metabolism. The article presents the molecular mechanisms causing intra-individual differences in enzyme expression and activity. They include enzyme induction by transcriptional activation and enzyme inhibition on the protein level. The influencing factors are of physiological, pathological, or external origin. Tissue characteristics and developmental age strongly influence enzyme-expression patterns. Further influencing factors are pregnancy, disease, or biological rhythms. Xenobiotics, drugs, constituents of herbal remedies, food constituents, ethanol, and tobacco can all influence enzyme expression or activity and, hence, affect drug metabolism.
Resumo:
The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic.
Resumo:
The Himalayan orogen is the result of the collision between the Indian and Asian continents that began 55-50 Ma ago, causing intracontinental thrusting and nappe formation. Detailed mapping as well as structural and microfabric analyses on a traverse from the Tethyan Himalaya southwestward through the High Himalayan Crystalline and the Main Central Thrust zone (MCT zone) to the Lesser Himalayan Sequence in the Spiti-eastern Lahul-Parvati valley area reveal eight main phases of deformation, a series of late stage phases and five stages of metamorphic crystallization. This sequence of events is integrated into a reconstruction of the tectonometamorphic evolution of the Himalayan orogen in northern Himachal Pradesh. The oldest phase D-1 is preserved as relies in the High Himalayan Crystalline. Its deformational conditions are poorly known, but the metamorphic evolution is well documented by a prograde metamorphism reaching peak conditions within the upper amphibolite facies. This indicates that D-1 was an important tectonometamorphic event including considerable crustal thickening. The structural, metamorphic and sedimentary record suggest that D-1 most probably represents an early stage of continental collision. The first event clearly attributed to the collision between India and Asia is documented by two converging nappe systems, the NE-verging Shikar Beh Nappe and the SW-verging north Himalayan nappes. The D-2 Shikar Beh Nappe is characterized by isoclinal folding and top-to-the NE shearing, representing the main deformation in the High Himalayan Crystalline. D-2 also caused the main metamorphism in the High Himalayan Crystalline that was of a Barrovian-type, reaching upper amphibolite facies peak conditions. The Shikar Beh Nappe is interpreted to have formed within the Indian crust SW of the subduction zone. Simultaneously with NE-directed nappe formation, incipient subduction of India below Asia caused stacking of the SW-verging north Himalayan Nappes, that were thrust from the northern edge of the subducted continent toward the front of the Shikar Beh Nappe. As a result, the SW-verging folds of the D-3 Main Fold Zone formed in the Tethyan Himalaya below the front of the north Himalayan nappes. D-3 represents the main deformation in the Tethyan Himalaya, associated with a greenschist facies metamorphism. Folding within the Main Fold Zone subsequently propagated toward SW into the High Himalayan Crystalline, where it overprinted the preexisting D-2 structures. After subduction at the base of the north Himalayan nappes, the subduction zone stepped to the base of the High Himalayan Crystalline, where D-3 folds were crosscut by SW-directed D-4 thrusting. During D-4, the Crystalline Nappe, comprising the Main Fold Zone and relies of the Shikar Beh Nappe was thrust toward SW over the Lesser Himalayan Sequence along the 4 to 5 kms thick Main Central Thrust zone. Thrusting was related to a retrograde greenschist facies overprint at the base of the Crystalline Nappe and to pro-grade greenschist facies conditions in the Lesser Himalayan Sequence. Simultaneously with thrusting at the base of the Crystalline Nappe, higher crustal levels were affected by NE-directed D-5 normal extensional shearing and by dextral strike-slip motion, indicating that the high-grade metamorphic Crystalline Nappe was extruded between the low-grade metamorphic Lesser Himalayan Sequence at the base and the north Himalayan nappes at the top. The upper boundary of the Crystalline Nappe is not clearly delimited and passes gradually into the low-grade rocks at the front of the north Himalayan nappes. Extrusion of the Crystalline Nappe was followed by the phase D-6, characterized by large-scale, upright to steeply inclined, NE-verging folds and by another series of normal and extensional structures D-7+D-8 that may be related to ongoing extrusion of the Crystalline Nappe. The late stage evolution is represented by the phases D-A and D-B that indicate shortening parallel to the axis of the mountain chain and by D-C that is interpreted to account for the formation of large-scale domes with NNW-SSE-trending axes, an example of which is exposed in the Larji-Kullu-Rampur tectonic window.