933 resultados para X-ray, electron beam, phase contrast
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.
Resumo:
The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.
Resumo:
The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.
Resumo:
Secondary minerals filling veins and vesicles in volcanic basement at Deep Sea Drilling Project Sites 458 and 459 indicate that there were two stages of alteration at each site: an early oxidative, probably hydrothermal, stage and a later, low-temperature, less oxidative stage, probably contemporaneous with faulting in the tectonically active Mariana forearc region. The initial stage is most evident in Hole 459B, where low-Al, high Fe smectites and iron hydroxides formed in vesicles in pillow basalts and low-Al palygorskite formed in fractures. Iron hydroxides and celadonite formed in massive basalts next to quartz-oligoclase micrographic intergrowths. Palygorskite was found in only one sample near the top of basement in Hole 458, but it too is associated with iron hydroxides. Palygorskite has previously been reported only in marine sediments in DSDP and other occurrences. It evidently formed here as a precipitate from fluids in which Si, Mg, Fe, and even some Al were concentrated. Experimental data suggest that the solutions probably had high pH and somewhat elevated temperatures. The compositions of associated smectites resemble those in hydrothermal sediments and in basalts at the Galapagos mounds geothermal field. The second stage of alteration was large-scale replacement of basalt by dioctahedral, trioctahedral, or mixed-layer clays and phillipsite along zones of intense fracturing, especially near the bottom of Holes 458 and 459B. The basalts are commonly slickensided, and there are recemented microfault offsets in overlying sediments. Native copper occurs in one core of Hole 458, but associated smectites are dominantly dioctahedral, unlike Hole 459B, where they are mainly trioctahedral, indicating nonoxidative alteration. The alteration in both holes is more intense than at most DSDP ocean crust sites and may have been augmented by water derived from subducting ocean crust beneath the fore-arc region.
Resumo:
Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.
Resumo:
We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K� yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of � 8 � 1010 A=cm2 they reach 1:5 keV=�m and 0:8 keV=�m, respectively. For higher current densities up to 1012 A=cm2, numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV=�m for electron current densities of 1014 A=cm2, representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.
Resumo:
X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW.
Resumo:
Los polímeros cristales líquidos (LCP) son sistemas complejos que forman mesofases que presentan orden orientacional y polímeros amorfos. Con frecuencia, el estado amorfo isotrópico no puede ser estudiado debido a la rápida formación de mesofases. En este trabajo se ha sintetizado y estudiado un nuevo LCP: poli(trietilenglicol metil p, p '-bibenzoato), PTEMeB. Este polímero presenta una formación de mesofase bastante lenta haciendo posible estudiar de forma independiente tanto los estados amorfo y de cristal líquidos. La estructura y las transiciones de fase del PTEMeB han sido investigados por calorimetría (DSC), con MAXS / WAXS con temperatura variable que emplean radiación de sincrotrón y con difracción de rayos X. Estos estudios han mostrado la existencia de dos transiciones vítreas, relacionadas con las fases amorfa y cristal líquido. Se ha realizado un estudio de relajación dieléctrica en amplios intervalos de temperatura y presión. Se ha encontrado que la transición vítrea dinámica de la fase amorfa es más lenta que la del cristal líquido. El estudio de la relajación ? nos ha permitido seguir la formación isoterma de la mesofase a presión atmosférica. Además, con el estudio el comportamiento dinámico a alta presión se ha encontrado que se produce la formación rápida de la mesofase inducida por cambios bruscos de presión. Liquid crystalline polymers (LCPs) are complex systems that include features of both orientationally ordered mesophases and amorphous polymers. Frequently, the isotropic amorphous state cannot be studied due to the rapid mesophase formation. Here, a new main chain LCP, poly(triethyleneglycol methyl p,p'-bibenzoate), PTEMeB, has been synthesized. It shows a rather slow mesophase formation making possible to study independently both the amorphous and the liquid crystalline states. The structure and phase transitions of PTEMeB have been investigated by calorimetry, variable-temperature MAXS/WAXS employing synchrotron radiation, and X-ray diffraction in oriented fibers. These experiments have pointed out the presence of two glass transitions, related to the amorphous or to the liquid crystal phases. Additionally, the mesophase seems to be a coexistence of orthogonal and tilted smectic phases. A dielectric relaxation study of PTEMeB over broad ranges of temperature and pressure has been performed. The dynamic glass transition turns out to be slower for the amorphous state than for the liquid crystal. Monitoring of the α relaxation has allowed us to follow the isothermal mesophase formation at atmospheric pressure. Additionally, the dynamical behavior at high pressures has pointed out the fast formation of the mesophase induced by sudden pressure changes.
Resumo:
Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains
Resumo:
The F1 part of the F1FO ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-Å resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F1 consists of five subunits with stoichiometry α3, β3, γ, δ, and ɛ. δ was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the α and β subunits are arranged in a hexagonal barrel but depart from exact 3-fold symmetry. In the structures of both beef heart and rat-liver mitochondrial F1, less than half of the structure of the γ subunit was seen because of presumed disorder in the crystals. The present electron-density map includes a number of rod-shaped features which appear to correspond to additional α-helical regions within the γ subunit. These suggest that the γ subunit traverses the full length of the stalk that links the F1 and FO parts and makes significant contacts with the c subunit ring of FO.