981 resultados para X-LINKED IMMUNODEFICIENCY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Introduction Toxoplasmosis, a zoonotic protozoal disease caused by toxoplasma gondii, is prevalent throughout the world, affecting a large proportion of persons who usually have no symptoms. Glucose 6 phosphate dehydrogenase deficiency, an X-linked inherited disorder, is present in over 400 million people world wide. It is more common in tropical and subtropical countries and is one of the important causes of hemolytic anemia. Case presentation This case report relates the occurrence of the two diseases simultaneously in a child of five years old. Conclusion Patients with glucose-6-phosphate dehydrogenase deficiency are more susceptible to toxoplasmosis and this case report, reinforce the findings of this propensity and alert us for such possibility, what it is important, therefore, the treatment of toxoplasmosis can cause serious hemolysis in these patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autism is a neurodevelpmental disorder characterized by impaired verbal communication, limited reciprocal social interaction, restricted interests and repetitive behaviours. Twin and family studies indicate a large genetic contribution to ASDs (Autism Spectrum Disorders). During my Ph.D. I have been involved in several projects in which I used different genetic approaches in order to identify susceptibility genes in autism on chromosomes 2, 7 and X: 1)High-density SNP association and CNV analysis of two Autism Susceptibility Loci. The International Molecular Genetic Study of Autism Consortium (IMGSAC) previously identified linkage loci on chromosomes 7 and 2, termed AUTS1 and AUTS5, respectively. In this study, we evaluated the patterns of linkage disequilibrium (LD) and the distribution of haplotype blocks, utilising data from the HapMap project, across the two strongest peaks of linkage on chromosome 2 and 7. More than 3000 SNPs have been selected in each locus in all known genes, as well as SNPs in non-genic highly conserved sequences. All markers have been genotyped to perform a high-density association analysis and to explore copy number variation within these regions. The study sample consisted of 127 and 126 multiplex families, showing linkage to the AUTS1 and AUTS5 regions, respectively, and 188 gender-matched controls. Association and CNV analysis implicated several new genes, including IMMP2L and DOCK4 on chromosome 7 and ZNF533 and NOSTRIN on the chromosome 2. Particularly, my contribution to this project focused on the characterization of the best candidate gene in each locus: On the AUTS5 locus I carried out a transcript study of ZNF533 in different human tissues to verify which isoforms and start exons were expressed. High transcript variability and a new exon, never described before, has been identified in this analysis. Furthermore, I selected 31 probands for the risk haplotype and performed a mutation screen of all known exons in order to identify novel coding variants associated to autism. On the AUTS1 locus a duplication was detected in one multiplex family that was transmitted from father to an affected son. This duplication interrupts two genes: IMMP2L and DOCK4 and warranted further analysis. Thus, I performed a screening of the cohort of IMGSAC collection (285 multiplex families), using a QMPSF assay (Quantitative Multiplex PCR of Short fluorescent Fragments) to analyse if CNVs in this genic region segregate with autism phenotype and compare their frequency with a sample of 475 UK controls. Evidence for a role of DOCK4 in autism susceptibility was supported by independent replication of association at rs2217262 and the finding of a deletion segregating in a sib-pair family. 2)Analysis of X chromosome inactivation. Skewed X chromosome inactivation (XCI) is observed in females carrying gene mutations involved in several X-linked syndromes. We aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 164 affected girls. The study sample included families from different european consortia. I analysed the XCI inactivation pattern in a sample of italian mothers from singletons families with ASD and also a control groups (144 adult females and 40 young females). We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (≥80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z score of 1.75 close to rs719489. In this region FMR1 and MECP2 have been associated in some cases with austim and therefore represent candidates for the disorder. I performed a mutation screen of MECP2 in 33 unrelated probands from IMGSAC and italian families, showing XCI skewness. Recently, Xq28 duplications including MECP2, have been identified in families with MR, with asymptomatic carrier females showing extreme (>85%) skewing of XCI. For these reason I used the sample of probands from X-skewed families to perform CNV analysis by Real-time quantitative PCR. No duplications have been found in our sample. I have also confirmed all data using as alternative method the MLPA assay (Multiplex Ligation dependent Probe Amplification). 3)ASMT as functional candidate gene for autism. Recently, a possible involvement of the acetylserotonin O-methyltransferase (ASMT) gene in susceptibility to ASDs has been reported: mutation screening of the ASMT gene in 250 individuals from the PARIS collection revealed several rare variants with a likely functional role; Moreover, significant association was reported for two SNPs (rs4446909 and rs5989681) located in one of the two alternative promoters of the gene. To further investigate these findings, I carried out a replication study using a sample of 263 affected individuals from the IMGSAC collection and 390 control individuals. Several rare mutations were identified, including the splice site mutation IVS5+2T>C and the L326F substitution previously reported by Melke et al (2007), but the same rare variants have been found also in control individuals in our study. Interestingly, a new R319X stop mutation was found in a single autism proband of Italian origin and is absent from the entire control sample. Furthermore, no replication has been found in our case-control study typing the SNPs on the ASMT promoter B.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction. Ectodermal Dysplasias are a heterogeneous group of inherited disorders characterized by dysplasia of tissues of ectodermal origin (hair, nails, teeth, skins and glands). Clinically, it may be divided into two broad categories: the X-linked hypoidrotic form and the hidrotic form. Hypohidrotic Ectodermal Dysplasia (H.E.D) is characterized by the triad oligo-anodontia, hypotricosis, hypo-anhydrosis (Christ-Siemens-Tourane syndrome). The incidence of HED is about 1/100,000. Mutation in the actodysplasin-A (EDA) and ectodysplasin-A receptor (EDAR) genes are responsible for X-linked and autosomal HED. The clinical features include sparse, fine hair, missing or conical-shaped teeth, decreased sweat and mucous glands, hypoplastic skin, and heat intolerance with exercise or increased ambient temperature. Complete or partial anodontia and malformation of teeth are the most frequent dental findings. Incisors and canines are often conical-shaped while primarily second molars, if present, are mostly affected by taurodontism. Treatment is supportive and includes protection from heat exposure, early prosthetic rehabilitation, skin, hair ear, nose and nail care, and genetic counseling for family planning. The diagnosis of HED in the neonatal and early infancy period may be difficult since sparse hair and absent teeth are normal finding at this age. In childhood the diagnosis is more easily made on the basis of history and clinical examination. Dental abnormalities are the most common complaint. Prosthetic rehabilitation has been recommended as an essential part of the management of HED because is important from functional, esthetic, and psychological standpoint. A team approach that includes input from a pediatric dentist, an orthodontist, a prosthodontist, and an oral and maxillofacial surgeon is necessary for a successful outcome. Conventional prosthodontic rehabilitation in young patient is often difficult because of the anatomical abnormalities of existing teeth and alveolar ridges. The conical shaped teeth and “knife-edge” alveolar ridges result in poor retention and instability of dentures. Moreover, denture must permit jaws expansion and a correct pattern of growth. Materials and Methods. Complete removable dentures were provided to allow for normal physiological development and a corrected masticatory function. Initial maxillary and mandibular impressions were made with smallest stock trays and irreversible hydrocolloid and then final impressions ware made with light-bodied polysulfide rubber base impression material. A base of autopolymerizing resin was constructed and a wax rim was added to the base. The patient’s vertical dimension of occlusion was established by assessing phonetic and esthetic criteria. Preliminary occlusal relations were recorded, and the mandibular cast was mounted on the articulator. Acrylic resin teeth specific for children dentures were selected and mounted. The dentures were tried in and, after proper adjustments, were inserted. The patients were monitored clinically every month to fit prostheses. Cephalometric radiographs were taken every 6 month with the prostheses in place in order to evaluate correct pattern of growth. Cephalometric measurements were realized and used to evaluate the effect of rehabilitation on craniofacial growth. Cephalometric measurements of sound patients were compared with ED patients. After two month expander screws (three-way screw in the upper denture and two-way the lower one)were inserted in each denture in order to permit the expansion of the denture and the jaws growth. Where conical teeth were present, composite crown were realized and luted to improve the esthetic and phonesis. In order to improve retention the placement of endosseous implants was carried out. TC 3D Accuitomo was performed and a resin model of mandibular bone of the patient was realized. At the age of 11 years two implants were inserted into anterior mandible in a child with anodontia. Despite a remarkable multi-dimensional atrophy of the mandibular alveolar process, the insertion of two tapered screw implants (SAMO Smiler, diameter 3.8, length 10 mm). After a submerged healing period of two-three month, the implants were exposed. Implants were connected with an expansion guide that permits mandibular growth and prosthetic retention. The amount of mandibular growth was also evaluate dusing the expansion guide. Results. Early oral rehabilitation improve oral function, phonesis and esthetic, reducing social impairment. Treated patients showed normal cephalometric measurement. Early rehabilitation is able to prevent the prognatissm of the mandibula . The number of teeth was significantly related to several changes in craniofacial morphology. Discussion. In the present study the 5,3% of ED patients showed hypodontia, the l’89,4% di oligodontia, and the 5,3% di anodontia. The cephalometric analysis supports that ED patients showed midface hypoplasia. ED groups showed an increased pogonion to nasion measurement than sound patients, indicative of class III tendency. The present study demonstrated that number of teeth was significantly correlated with deviation of cephalometric measurements from normality. Oligoanodontia is responsible for changing of cephalometric measuraments also on sagittal plane with a class III tendency. Maxillary jaw showed a retrused position related to the presence of hypodontia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rett's Syndrome (RTT) is a severe neurodevelopmental disorder, characterized by cognitive disability that appears in the first months/years of life. Recently, mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been detected in RTT patients characterized by early-onset seizures. CDKL5 is highly expressed in the brain starting from early postnatal stages to adulthood, suggesting the importance of this kinase for proper brain maturation and function. However, the role/s of CDKL5 in brain development and the molecular mechanisms whereby CDKL5 exerts its effects are still largely unknown. In order to characterize the role of CDKL5 on brain development, we created a mice carrying a targeted conditional knockout allele of Cdkl5. A first behavioral characterization shows that Cdkl5 knockout mice recapitulate several features that mimic the clinical features described in CDKL5 patients and are a useful tool to investigate phenotypic and functional aspects of Cdkl5 loss. We used the Cdkl5 knockout mouse model to dissect the role of CDKL5 on hippocampal development and to establish the mechanism/s underlying its actions. We found that Cdkl5 knockout mice showed increased precursor cell proliferation in the hippocampal dentate gyrus. Interestingly, this region was also characterized by an increased rate of apoptotic cell death that caused a reduction in the final neuron number in spite of the proliferation increase. Moreover, loss of Cdkl5 led to decreased dendritic development of new generated granule cells. Finally, we identified the Akt/GSK3-beta signaling as a target of Cdkl5 in the regulation of neuronal precursor proliferation, survival and maturation. Overall our findings highlight a critical role of CDKL5/AKT/GSK3-beta signaling in the control of neuron proliferation, survival and differentiation and suggest that CDKL5-related alterations of these processes during brain development underlie the neurological symptoms of the CDKL5 variant of RTT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morbus Hunter, eine lysosomale Speicherkrankheit, ist eine seltene, progrediente, x-chromosomal vererbte Stoffwechselkrankheit, die durch ein Defizit an Iduronat-2-sulfatase (IDS) hervorgerufen wird. Als Folge daraus erfolgt kein Abbau von Heparan- und Dermatansulfat und die Glykosaminoglykane reichern sich in de Lysosomen der Zelle an. M. Hunter ist eine Multisystemerkrankung und weist ein breites klinisches Spektrum mit interindividuell unterschiedlichem Krankheitsbeginn, Ausprägungen und Progression der Symptome auf. Seit 2007 besteht die Therapieoption einer Enzymersatztherapie (ERT) mit Elaprase®. Einige Patienten entwickeln Antikörper gegen das substituierte Enzym, welche partiell neutralisierende Eigenschaften besitzen. Ziel dieser Untersuchung war es zu klären, ob die Neutralisationskapazität der gebildeten Antikörper mittels einer Bestimmung im Mischserum festgestellt werden kann und ob persistierende Antikörper mit Neutralisationskapazität zu einer Einschränkung der Wirksamkeit der Enzymersatztherapie führen. Es sollte weiterhin untersucht werden, ob sich mittels Messung der neuronenspezifischen Enolase (NSE) und S-100 Rückschlüsse auf eine neuropathische Beteiligung ziehen lassen, da bis jetzt noch keine klinische oder biochemische Messmethode existiert, die für M. Hunter-Patienten eine verlässliche Vorhersage für eine neuropathische Beteiligung bietet. 30 Patienten wurden in die retrospektive/prospektive Kohortenstudie eingeschlossen. Bei der Bestimmung der IDS-Aktivität im Mischserum mit einem gesunden Menschen zeigten fünf der Patienten (17%) in zwölf Mischseren eine um ≥ 40% reduzierte Aktivität. Zwei (7%) der 30 untersuchten Patienten wurden mit dieser Methode als positiv für persistierende neutralisierende Antikörper identifiziert. Zum gleichen Ergebnis bezüglich der persistierenden neutralisierenden Antikörper führten die Anti-Elaprase®-Immunglobulin-Bestimmungen unter Berücksichtigung des Bestimmungszeitpunkts, die bei Shire Pharmaceuticals durchgeführt wurden. Die Untersuchungsergebnisse lassen den Schluss zu, dass die gebildeten Antikörper auch intraindividuell unterschiedlich sind. Zudem interagieren sie mit den verschiedensten Epitopen des Enzyms der ERT und besitzen nicht alle neutralisierende Eigenschaften. Aufgrund der heterogenen Zusammensetzung folgt die Hemmung der Enzymaktivität vermutlich keiner eindeutigen Kinetik. Anti-Elaprase®-Immunglobulin G spielt für die Neutralisationskapazität jedoch eine wichtige Rolle. Die Auswertung und Beurteilung der Einschränkung der Wirksamkeit der Therapie hervorgerufen durch die Antikörper mit Neutralisationskapazität gestaltete sich kompliziert. Im Ergebnis zeigte sich, dass sich die beiden Patienten mit persistierenden neutralisierenden Antikörpern in der Entwicklung der klinischen Parameter interindividuell stark unterschieden. Um einen Zusammenhang zwischen klinischem Verlauf und Antikörperbildung gegen die ERT zu finden, müssen in einem größeren Patientenkollektiv mehr Patienten mit persistierenden neutralisierenden Antikörpern identifiziert werden und der Einfluss der Antikörper untersucht werden. Die Untersuchung der NSE und S-100 ergab, dass weder die Konzentration der NSE noch der S-100 Rückschlüsse auf die neuropathische Beteiligung des Patienten zulässt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Properdin, a serum glycoprotein, is an important component of innate immunity, the only known positive regulator of complement, acting as an initiation point for alternative pathway activation. As an X-linked protein, we hypothesized that properdin may play a modulatory role in the pathogenesis of viral wheeze in children, which tends to be more common and more severe in boys. We aimed to determine properdin levels in a community-based paediatric sample, and to assess whether levels of properdin were associated with childhood wheeze phenotypes and atopy. We studied 137 school-children aged 8-12 yrs, a nested sample from a cohort study. Properdin was measured by a commercial enzyme-linked immunoabsorbant assay. We assessed wheeze by questionnaire, validated it by a nurse-led interview and performed skin prick tests and a methacholine challenge in all children. Forty children (29%) reported current wheeze. Serum properdin levels ranged between 18 and 40 microg/ml. Properdin was not associated with age, gender, atopy, bronchial responsiveness, current wheeze (neither the viral wheeze nor multiple-trigger wheeze phenotype) or severity of wheeze, but was slightly lower in south Asian (median 21.8 microg/ml) compared with white children (23.3 microg/ml; p = 0.006). Our data make it unlikely that properdin deficiency is common in healthy children or that levels of properdin are a major risk factor for wheeze or atopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabry's disease corresponds to an inherited disorder transmitted by an X-linked recessive gene. It generates a dysfunction of glycosphingolipid metabolism due to an enzymatic deficiency of alpha-galactosidase activity, resulting in glycosphingolipid deposits in all areas of the body. The clinical (heart, kidney, and central nervous system) manifestations are more severe in hemizygous boys than in heterozygous girls. They appear during childhood or adolescence: acroparesthesia, joint pain, angiokeratoma, corneal dystrophy, hypohydrosis or anhydrosis, and renal failure. The otoneurologic symptoms consist of hearing fluctuation, progressive unilateral or bilateral hearing loss, and episodes of vertigo or dizziness. Otoneurologic findings in 12 of 26 members of the same family are presented: the mother and 9 of her 12 children, as well as 2 of her 14 grandchildren: 4 healthy persons, 4 heterozygous female carriers, and 4 hemizygous male patients. Three of the male patients had fluctuation of hearing, sudden hearing loss, and episodes of vertigo and dizziness. The otoneurologic examinations showed a bilateral cochleovestibular deficit (n = 1), a right cochleovestibular deficit (n = 1), and a bilateral hearing loss combined with a right vestibular deficit (n = 1). Histopathologic evidence of glycosphingolipid accumulation in vascular endothelial and ganglion cells, as well as atrophy of the stria and spiral ligament, might explain the otoneurologic symptoms and findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations of the X-linked dystrophin gene. BMD patients are less affected clinically than DMD patients. We present five patients with a diagnosis of BMD. First, two identical twins, with a deletion of exon 48 of the dystrophin gene, who experienced prominent muscle cramps from the age of three. The histopathological examination of muscle biopsies of these two twins revealed only very slight muscle fiber alterations. Second, two brothers who displayed marked, unusual intrafamilial variability of the clinical picture as well as showing a new point mutation in the dystrophin gene. And finally, a fifth boy who displayed a new point mutation in the dystrophin gene. Although he was clinically asymptomatic at the age of 15 and muscle biopsy only showed very minor myopathic signs, serum Creatine Kinase (CK) levels had been considerably elevated for years. Taken together, these cases add to the spectrum of marked discrepancies in clinical, histopathological and molecular genetic findings in BMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Faciogenital dysplasia or Aarskog-Scott syndrome (AAS) is an X-linked disorder characterized by craniofacial, skeletal, and urogenital malformations and short stature. Mutations in the only known causative gene FGD1 are found in about one-fifth of the cases with the clinical diagnosis of AAS. FGD1 is a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42 via its RhoGEF domain. The Cdc42 pathway is involved in skeletal formation and multiple aspects of neuronal development. We describe a boy with typical AAS and, in addition, unilateral focal polymicrogyria (PMG), a feature hitherto unreported in AAS. Sequencing of the FGD1 gene in the index case and his mother revealed the presence of a novel mutation (1396A>G; M466V), located in the evolutionary conserved alpha-helix 4 of the RhoGEF domain. M466V was not found in healthy family members, in >300 healthy controls and AAS patients, and has not been reported in the literature or mutation databases to date, indicating that this novel missense mutation causes AAS, and possibly PMG. Brain cortex malformations such as PMG could be initiated by mutations in the evolutionary conserved RhoGEF domain of FGD1, by perturbing the signaling via Rho GTPases such as Cdc42 known to cause brain malformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) constitutes a major cause of blindness and the Retinitis Pigmentosa GTPase Regulator (RPGR) gene accounts for up to 80% of all X-linked RP cases. A novel isoform of RPGR, expressed in the human retina, was identified and characterized. It truncates the Regulator of Chromosome Condensation 1 (RCC1) homologous protein domain (RCC1h) of RPGR and mediates the formation of isoform-specific complexes with the RPGR-interacting protein 1 (RPGRIP1). Immunohistochemistry localized the novel RPGR isoform predominantly to inner segments of cone photoreceptors, where it colocalizes with RPGRIP1 in the human retina. In a patient with a mild RP phenotype, we identified a nucleotide substitution in a splicing regulator, which leads to 3.5 times higher levels of the transcripts coding for the novel RPGR isoform. The nucleotide substitution affects regulated alternative splicing of the novel RPGR isoform and suggests a tight adjustment of splicing as a prerequisite for proper function of photoreceptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare recessive hereditary disorder characterized by dysmotility to immotility of ciliated and flagellated structures. Its main symptoms are respiratory, caused by defective ciliary beating in the epithelium of the upper airways (nose, bronchi and paranasal sinuses). Impairing the drainage of inhaled microorganisms and particles leads to recurrent infections and pulmonary complications. To date, 5 genes encoding 3 dynein protein arm subunits (DNAI1, DNAH5 and DNAH11), the kinase TXNDC3 and the X-linked RPGR have been found to be mutated in PCD. OBJECTIVES: We proposed to determine the impact of the DNAI1 gene on a cohort of unrelated PCD patients (n = 104) recruited without any phenotypic preselection. METHODS: We used denaturing high-performance liquid chromatography and sequencing to screen for mutations in the coding and splicing site sequences of the gene DNAI1. RESULTS: Three mutations were identified: a novel missense variant (p.Glu174Lys) was found in 1 patient and 2 previously reported variants were identified (p.Trp568Ser in 1 patient and IVS1+2_3insT in 3 patients). Overall, mutations on both alleles of gene DNAI1 were identified in only 2% of our clinically heterogeneous cohort of patients. CONCLUSION: We conclude that DNAI1 gene mutation is not a common cause of PCD, and that major or several additional disease gene(s) still remain to be identified before a sensitive molecular diagnostic test can be developed for PCD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.