951 resultados para Working-memory


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Results from previous studies indicate that children with brain tumors (BT) might present with cognitive problems at diagnosis and thus before the start of any medical treatment. The question remains whether these problems are due to the underlying tumor itself or due to the high level of emotional and physical stress which is involved at diagnosis of a malignant disorder. All children with a de novo oncological diagnosis not involving the central nervous systems (CNS) are usually exposed to a comparable level of distress. However, patients with cancer not involving the CNS are not expected to show disease-related cognitive problems. Thus they serve as a well-balanced control group (CG) to help distinguish between the probable causes of the effect. Method: In a pilot study we analyzed an array of cognitive functions in 16 children with BT and 17 control patients. In both groups, tests were administered in-patient at diagnosis before any therapeutic intervention such as surgery, chemotherapy od irradiation. Results: Performance of children with BT was comparable to that of CG patients in the areas of intelligence, perceptual reasoning, verbal comprehension, working memory, and processing speed. In contrast, however, BT patients performded significantly worse in verbal memory and attention. Conclusion: Memory and attention seem to be the most vulnerable funstions affected by BT, with other functions being preserved at the time of diagnosis. It ist to be expected that this vulnerability might exacerbate the cognitive decline after chemotherapy and radiation treatment - known to impair intellectual performance. The findings highlight the need of early cognitive assessments in children with BT in order to introduce cognitive training as early as possible to minimize or even prevent cognitive long-term sequelae. This might improve long-term academic and professional outcome of these children, but especially helps their return to school after hospitalization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: To examine the effect of memory strategy training on different aspects of memory in children born very preterm and to determine whether there is a generalization of the training effect to non-trained functions. The influence of individual factors such as age and performance level on the training success will be determined. Methods: In a randomized, controlled and blinded clinical trial, 46 children born very preterm (aged 7-12 years) were allocated to a memory strategy training (MEMO-Training, n=23) or a control group (n=23). Neuropsychological assessment was performed before, immediately after the training and at a 6-month follow-up. In the MEMO-Training, five different memory strategies were introduced and practiced in a one-to-one setting (4 hour-long training sessions over 4 weeks, 20 homework sessions). Results: A significant training-related improvement occurred in trained aspects of memory (verbal and visual learning and recall, verbal working memory) and in non-trained functions (inhibition, mental arithmetic). No performance increase was observed in the control group. At six months follow-up, there was a significant training-related improvement of visual working memory. Age and performance level before the training predicted the training success significantly. Conclusion: Teaching memory strategies is an effective way to improve different aspects of memory but also non-trained functions such as inhibition and mental arithmetic in children born very preterm. Age and performance level influence the success of memory strategy training. These results highlight the importance of teaching children memory strategies to reduce scholastic problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE There is mixed evidence regarding neural change following cognitive training. Brain activation increase, decrease, or a combination of both may occur. We investigated training-induced neural change using two different memory training approaches. METHODS Very preterm born children (aged 7-12 years) were randomly allocated to a memory strategy training, an intensive working memory practice or a waiting control group. Before and immediately after the trainings and the waiting period, brain activation during a visual working memory task was measured using fMRI and cognitive performance was assessed. RESULTS Following both memory trainings, there was a significant decrease of fronto-parietal brain activation and a significant increase of memory performance. In the control group, no neural or performance change occurred after the waiting period. CONCLUSION These pilot data point towards a training-related decrease of brain activation, independent of the training approach. Our data highlight the high training-induced plasticity of the child's brain during development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Little research has been conducted to assess the effect of using memory training with school-aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7¬-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Little research has been conducted to assess the effect of using memory training with school aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present synopsis aims to integrate one study about memory training in very preterm-born children and two studies about cognition in patients with carotid artery stenosis before and after treatments. Preterm-born children are at increased risk of cognitive deficits and behavioural problems compared with peers born at term. This thesis determined whether memory training would improve cognitive functions in school-age very preterm-born children. Memory strategy training produced significant improvements in trained and non-trained cognitive functions; a core working memory training revealed significant effects on short-term memory and working memory tasks. Six months after training, children in both training groups showed better working memory performance than children in the waiting control group. This is evidence that memory training – an external influence on cognition – induces plastic changes in very preterm-born children. Patients with carotid artery stenosis are known to be at increased risk of cognitive impairment. We showed that patients with symptomatic or asymptomatic carotid artery stenosis were at higher risk for cognitive deficits than expected in a normative sample. This thesis seeks to link cognitive plasticity to internal factors like carotid stenosis. An external factor, which influences blood flow to the brain is the nature of the carotid artery stenosis treatment. Research on the effects of carotid artery stenosis treatment on cognition has produced inconsistent results. We found significant improvement in frontal lobe functions, visual memory and motor speed one year after treatment independent of the treatment type (best medical treatment, carotid artery stenting, carotid artery endarterectomy); providing evidence for ‘treatment-induced’ cognitive plasticity. Baseline performance was negatively associated with improvement in various cognitive functions after training in very preterm-born children and after treatment in patients with carotid artery stenosis. The present synopsis aims to integrate these findings into the current and relevant literature, and discuss consequences as well as methodological considerations resulting from the studies constituting the thesis at hand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. This study was planned at a time when important questions were being raised about the adequacy of using one hormone to treat hypothyroidism instead of two. Specifically, this trial aimed to replicate prior findings which suggested that substituting 12.5 μg of liothyronine for 50 μg of levothyroxine might improve mood, cognition, and physical symptoms. Additionally, this trial aimed to extend findings to fatigue. ^ Methods. A randomized, double-blind, two-period, crossover design was used. Hypothyroid patients stabilized on levothyroxine were invited to participate. Thirty subjects were recruited and randomized. Sequence one received their standard levothyroxine dose in one capsule and placebo in another during the first six weeks. Sequence two received their usual levothyroxine dose minus 50 μg in one capsule and 10 μg of liothyronine in another. At the end of the first six week period, subjects were crossed over. T tests were used to assess carry-over and treatment effects. ^ Results. Twenty-seven subjects completed the trial. The majority of completers had an autoimmune etiology. Mean baseline levothyroxine dose was 121 μg/d (±26.0). Subjects reported small increases in fatigue as measured by the Piper Fatigue Scale (0.9, p = 0.09) and in symptoms of depression measured by the Beck Depression Inventory-II (2.3, p = 0.16) as well as the General Health Questionnaire-30 (4.7, p = 0.14) while treated with substitution treatment. However, none of these differences was statistically significant. Measures of working memory were essentially unchanged between treatments. Thyroid stimulating hormone was about twice as high during substitution treatment (p = 0.16). Free thyroxine index was reduced by 0.7 (p < 0.001), and total serum thyroxine was reduced by 3.0 (p < 0.001) while serum triiodothyronine was increased by 20.5 (p < 0.001) on substitution treatment. ^ Conclusions. Substituting an equivalent amount of liothyronine for a portion of levothyroxine in patients with hypothyroidism does not decrease fatigue, symptoms of depression, or improve working memory. However, due to changes in serum hormone levels and small increments in fatigue and depression symptoms on substitution treatment, a question was raised about the role of T3 in the serum. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies show that neuronal mechanisms for learning and memory both dynamically modulate and permanently alter the representations of visual stimuli in the adult monkey cortex. Three commonly observed neuronal effects in memory-demanding tasks are repetition suppression, enhancement, and delay activity. In repetition suppression, repeated experience with the same visual stimulus leads to both short- and long-term suppression of neuronal responses in subpopulations of visual neurons. Enhancement works in an opposite fashion, in that neuronal responses are enhanced for objects with learned behavioral relevance. Delay activity is found in tasks in which animals are required to actively hold specific information “on-line” for short periods. Repetition suppression appears to be an intrinsic property of visual cortical areas such as inferior temporal cortex and is thought to be important for perceptual learning and priming. By contrast, enhancement and delay activity may depend on feedback to temporal cortex from prefrontal cortex and are thought to be important for working memory. All of these mnemonic effects on neuronal responses bias the competitive interactions that take place between stimulus representations in the cortex when there is more than one stimulus in the visual field. As a result, memory will often determine the winner of these competitions and, thus, will determine which stimulus is attended.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human functional neuroimaging techniques provide a powerful means of linking neural level descriptions of brain function and cognition. The exploration of the functional anatomy underlying human memory comprises a prime example. Three highly reliable findings linking memory-related cognitive processes to brain activity are discussed. First, priming is accompanied by reductions in the amount of neural activation relative to naive or unprimed task performance. These reductions can be shown to be both anatomically and functionally specific and are found for both perceptual and conceptual task components. Second, verbal encoding, allowing subsequent conscious retrieval, is associated with activation of higher order brain regions including areas within the left inferior and dorsal prefrontal cortex. These areas also are activated by working memory and effortful word generation tasks, suggesting that these tasks, often discussed as separable, might rely on interdependent processes. Finally, explicit (intentional) retrieval shares much of the same functional anatomy as the encoding and word generation tasks but is associated with the recruitment of additional brain areas, including the anterior prefrontal cortex (right > left). These findings illustrate how neuroimaging techniques can be used to study memory processes and can both complement and extend data derived through other means. More recently developed methods, such as event-related functional MRI, will continue this progress and may provide additional new directions for research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Working memory refers to the ability of the brain to store and manipulate information over brief time periods, ranging from seconds to minutes. As opposed to long-term memory, which is critically dependent upon hippocampal processing, critical substrates for working memory are distributed in a modality-specific fashion throughout cortex. N-methyl-D-aspartate (NMDA) receptors play a crucial role in the initiation of long-term memory. Neurochemical mechanisms underlying the transient memory storage required for working memory, however, remain obscure. Auditory sensory memory, which refers to the ability of the brain to retain transient representations of the physical features (e.g., pitch) of simple auditory stimuli for periods of up to approximately 30 sec, represents one of the simplest components of the brain working memory system. Functioning of the auditory sensory memory system is indexed by the generation of a well-defined event-related potential, termed mismatch negativity (MMN). MMN can thus be used as an objective index of auditory sensory memory functioning and a probe for investigating underlying neurochemical mechanisms. Monkeys generate cortical activity in response to deviant stimuli that closely resembles human MMN. This study uses a combination of intracortical recording and pharmacological micromanipulations in awake monkeys to demonstrate that both competitive and noncompetitive NMDA antagonists block the generation of MMN without affecting prior obligatory activity in primary auditory cortex. These findings suggest that, on a neurophysiological level, MMN represents selective current flow through open, unblocked NMDA channels. Furthermore, they suggest a crucial role of cortical NMDA receptors in the assessment of stimulus familiarity/unfamiliarity, which is a key process underlying working memory performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research on the effect of hormone replacement therapy (HRT) on memory in mid-aged women is equivocal although findings indicate that oestrogen may enhance verbal memory. Mood may mediate the relationship between HRT and memory. This study examined the effect of HRT on mood and everyday memory in two samples of women between ages 40 and 60 years. In the cross-sectional comparison (N = 124), HRT users performed significantly better on tests of everyday and verbal memory. A within-woman comparison of 17 women showed that everyday memory, working memory, and delayed verbal memory improved after 3 months of HRT use. The improvement in memory was not mediated by mood. These results suggest that any effect of HRT on mood may be short-term but that some aspects of everyday memory are enhanced, particularly verbal memory. The development of the everyday memory construct and future investigation are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research on the effect of hormone replacement therapy (HRT) on both mood and memory indicates that oestrogen may enhance verbal memory in younger mid-aged women. This study examined the effect of HRT on everyday memory, while accounting for mood changes, in women between ages 40 and 60. A within-subjects comparison of 17 women, showed that mood, everyday memory, working memory, and delayed verbal memory improved after 3 months of HRT use. The improvement in memory was not mediated by mood, but changes in mood were moderated by exercise habits. The results suggest that verbal memory in particular may be enhanced by HRT in this age group, and everyday memory is an important construct to consider in future research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The most robust neurocognitive effect of marijuana use is memory impairment. Memory deficits are also high among persons living with HIV/AIDS, and marijuana use among this population is disproportionately common. Yet research examining neurocognitive outcomes resulting from co-occurring marijuana and HIV is virtually non-existent. The primary aim of this case-controlled study was to identify patterns of neurocognitive impairment among HIV patients who used marijuana compared to HIV patients who did not use drugs by comparing the groups on domain T-scores. Participants included 32 current marijuana users and 37 non-drug users. A comprehensive battery assessed substance use and neurocognitive functioning. Among the full sample, marijuana users performed significantly worse on verbal memory tasks compared to non-drug users and significantly better on attention/working memory tasks. A secondary aim of this study was to test whether the effect of marijuana use on memory was moderated by HIV disease progression, but these models were not significant. This study also examined whether the effect of marijuana use was differentially affected by marijuana use characteristics, finding that earlier age of initiation was associated with worse memory performance. These findings have important clinical implications, particularly given increased legalization of this drug to manage HIV infection.