971 resultados para Wood Dale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aimed to characterize and identify QTLs for wood quality and growth traits in E. grandis x E. urophylla hybrids. For this purpose a RAPD linkage map was developed for the hybrids (LOD=3 and r=0.40) containing 52 markers and 12 linkage groups. Traits related to wood quality and growth were evaluated in the QTL analyses. QTL analyses were performed using chi-square tests, single-marker, interval mapping and composite interval mapping analyses. All approaches led to the identification of similar QTLs associated with wood density, cellulose pulp yield and percentage of extractives, which were detected and confirmed by both the interval mapping and composite interval mapping methodologies. Some QTLs regions were confirmed only by the composite interval mapping methodology: percentage of soluble lignin, percentage of insoluble lignin, CBH and total height. Overlapping QTLs regions were detected, and these, can be the result of major genes involved in the regulation and control of the growth traits by epistatic interactions. In order to evaluate the effect of early selection using RAPD molecular data, molecular markers adjacent to QTLs were used genotype selection. The analysis of selection differential values suggests that for all the traits the phenotypic selection at seven years should generate larger genetic gains than early selection assisted by molecular markers and the combination of the strategies should elevate the selection efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of bioenergy on the basis of wood fuels has received considerable attention in the last decades. The combination of large forest resources and reliance on fossil fuels makes the issue of wood chips usage in Russia an actual topic for the analysis. The main objective of this study is to disclose the current state and perspectives for the production of wood chips and their usage as a source of energy in the North-West of Russia. The study utilizes an integrated approach to explore the market of wood chips on the basis of comprehensive analysis of documentation and expert opinions. The analysis of wood chips market was performed for eight regions of the North-West district of Russia within two major dimensions: its current state and perspectives in the nearest five years. The results of the study show a comprehensive picture of the wood chips market, including the potential for wood chips production, the specific features of production and consumption and the perspectives for the market development within the regions of the North-West district of Russia. The study demonstrated that the market of wood chips is underdeveloped in the North-West of Russia. The findings of the work may be used by forest companies for the strategic planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tension (TW) and opposite wood (OW) of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively). The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes) were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EO)D1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcoal production stands out as a raw material for the production of renewable energy. To assess wood quality in energy terms, studies have focused more on the holocellulose and lignin content than on the role of extractives. The objective of this study was to evaluate the relationship between the extractive content in cold water, in dichloromethane and total on energy properties of wood and charcoal, from six trees species. The extractives were removed with different solvents to be recorded and gross calorific value of wood was determined. The wood was carbonized at 1.67°C/min heating rate until maximum of 450°C and residence time of 30 min. The extractive content was correlated with the gravimetric yield, apparent relative density, ash, volatile matter, fixed carbon and gross calorific value of charcoal. The removal of total extractives and extractives soluble in dichloromethane reduced the gross calorific value of wood of most species evaluated. The extractives removed in cold water did not correlate with the parameters of carbonization. The extractives content in dichloromethane correlated with volatile matter, fixed carbon and gross calorific value. Total extractive content correlated with gravimetric yield, apparent relative density and gross calorific value of charcoal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Climatic conditions stimulates the cambial activity of plants, and cause significant changes in trunk diameter growth and wood characteristics. The objective of this study was to evaluate the influence of climate variables in the diameter growth rate of the stem and the wood density of Eucalyptus grandis trees in different classes of the basal area. A total of 25 Eucalyptus trees at 22 months of age were selected according to the basal area distribution. Dendrometer bands were installed at the height of 1.30 meters (DBH) to monitor the diameter growth every 14 days, for 26 months. After measuring growth, the trees were felled and wood discs were removed at the DBH level to determine the radial density profile through x-ray microdensitometry and then re-scale the average values every 14 days. Climatic variables for the monitoring period were obtained and grouped every 14 days. The effect of the climate variables was determined by maximum and minimum growth periods in assessing trunk growth. These growth periods were related with precipitation, average temperature and relative air humidity. The re-scaled wood density values, calculated using the radial growth of the tree trunks measured accurately with steel dendrometers, enabled the determination of the relationship of small changes in wood density and the effect of the climatic variations and growth rate of eucalyptus tree trunks. A high sensitivity of the wood density to variation in precipitation levels was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AB STRACT This study aimed at evaluating the natural durability of Eucalyptus dunnii, Eucalyptus robusta, Eucalyptus tereticornis and Hovenia dulcis woods submitted to a deterioration test in two environments, field and forest. The test samples were buried until half of their length (150 mm). Evaluations were carried out each 45 days, totalizing a 405-day period, with three-repetition withdrawal of each species for environment, totalizing nine samples from each environment, making up 24 test samples for evaluation. After percentage calculations of mass loss and resistance degree classification, the deterioration index was adopted for decomposition evaluation and fungal decay potential determination of test samples. The study has been carried out in completely randomized design (CRD), evaluated through analysis of variance (ANOVA) with subsequent comparison of means by Turkey' s test, in a 5%-level of probability of error, along with regression analysis. Eucalyptus tereticornis wood presented lesser mass loss in both environments. Hovenia dulcis presented lesser deterioration probability in both environments. Forest environment test samples presented greater mass loss percentages and lesser deterioration index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to study the influence of factors related to the proper management of pig manure (lower dilution) and the season of the year in the progress of the co-composting of pig manure with wood shavings and in the final quality of the compost resulting from the treatments. In the first experiment, two types of swine manure were used: a diluted one (2% Dry Matter - DM), typical from the management usually used in Brazil, and a more concentrated one (6% DM). The manures were incorporated into the wood shavings (6L:1kg) over the course of four weeks. The development of composting was accompanied by monitoring of temperatures inside the piles and the emission of CO2 and CH4 gases during 65 days, including the period of incorporation. The results showed that the diluted manure does not provide the minimum conditions for starting the process. After the incorporation period, any biomass heating was observed and neither the aerobic or anaerobic respiration of the microorganisms, resulting in a compost with low quality. In the second experiment, which evaluated composting in winter and summer during 85 days, it was found that the heat exchange with the environment influences the temperature generated within the piles. The lower temperatures significantly reduced the methanogenesis on the biomass.