971 resultados para Within-generation variance
Resumo:
Conditional gene repair mutations in the mouse can assist in cell lineage analyses and provide a valuable complement to conditional gene inactivation strategies. We present a method for the generation of conditional gene repair mutations that employs a loxP-flanked (floxed) selectable marker and transcriptional/translational stop cassette (neostop) located within the first intron of a target gene. In the absence of Cre recombinase, expression of the targeted allele is suppressed generating a null allele, while in the presence of Cre, excision of neostop restores expression to wild-type levels. To test this strategy, we have generated a conditional gene repair allele of the mouse Huntington’s disease gene homolog (Hdh). Insertion of neostop within the Hdh intron 1 generated a null allele and mice homozygous for this allele resembled nullizygous Hdh mutants and died after embryonic day 8.5. In the presence of a cre transgene expressed ubiquitously early in development, excision of neostop restored Hdh expression and rescued the early embryonic lethality. A simple modification of this strategy that permits the generation of conventional gene knockout, conditional gene knockout and conditional gene repair alleles using one targeting construct is discussed.
Resumo:
Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.
Resumo:
Many parasites exhibit antigenic variation within their hosts. We use mathematical models to investigate the dynamical interaction between an antigenically varying parasite and the host's immune system. The models incorporate antigenic variation in the parasite population and the generation of immune responses directed against (i) antigens specific to individual parasite variants and (ii) antigens common to all the parasite variants. Analysis of the models allows us to evaluate the relative importance of variant-specific and cross-reactive immune responses in controlling the parasite. Early in the course of infection within the host, when parasite diversity is below a defined threshold value (the value is determined by the biological properties of the parasite and of the host's immune response), the variant-specific immune responses are predominant. Later, when the parasite diversity is high, the cross-reactive immune response is largely responsible for controlling the parasitemia. It is argued that increasing antigenic diversity leads to a switch from variant-specific to cross-reactive immune responses. These simple models mimic various features of observed infections recorded in the experimental literature, including an initial peak in parasitemia, a long and variable duration of infection with fluctuating parasitemia that ends with either the clearance of the parasite or persistent infection.
Resumo:
Coronary artery disease is a leading cause of death in individuals with chronic spinal cord injury (SCI). However, platelets of those with SCI (n = 30) showed neither increased aggregation nor resistance to the antiaggregatory effects of prostacyclin when compared with normal controls (n = 30). Prostanoid-induced cAMP synthesis was similar in both groups. In contrast, prostacyclin, which completely inhibited the platelet-stimulated thrombin generation in normal controls, failed to do so in those with SCI. Scatchard analysis of the binding of [3H]prostaglandin E1, used as a prostacyclin receptor probe, showed the presence of one high-affinity (Kd1 = 8.11 +/- 2.80 nM; n1 = 172 +/- 32 sites per cell) and one low-affinity (Kd2 = 1.01 +/- 0.3 microM; n2 = 1772 +/- 226 sites per cell) prostacyclin receptor in normal platelets. In contrast, the same analysis in subjects with SCI showed significant loss (P < 0.001) of high-affinity receptor sites (Kd1 = 6.34 +/- 1.91 nM; n1 = 43 +/- 10 sites per cell) with no significant change in the low affinity-receptors (Kd2 = 1.22 +/- 0.23; n2 = 1820 +/- 421). Treatment of these platelets with insulin, which has been demonstrated to restore both of the high- and low-affinity prostaglandin receptor numbers to within normal ranges in coronary artery disease, increased high-affinity receptor numbers and restored the prostacyclin effect on thrombin generation. These results demonstrate that the loss of the inhibitory effect of prostacyclin on the stimulation of thrombin generation was due to the loss of platelet high-affinity prostanoid receptors, which may contribute to atherogenesis in individuals with chronic SCI.
Resumo:
We have characterized a family of repetitive DNA elements with homology to the MgPa cellular adhesion operon of Mycoplasma genitalium, a bacterium that has the smallest known genome of any free-living organism. One element, 2272 bp in length and flanked by DNA with no homology to MgPa, was completely sequenced. At least four others were partially sequenced. The complete element is a composite of six regions. Five of these regions show sequence similarity with nonadjacent segments of genes of the MgPa operon. The sixth region, located near the center of the element, is an A+T-rich sequence that has only been found in this repeat family. Open reading frames are present within the five individual regions showing sequence homology to MgPa and the adjacent open reading frame 3 (ORF3) gene. However, termination codons are found between adjacent regions of homology to the MgPa operon and in the A+T-rich sequence. Thus, these repetitive elements do not appear to be directly expressible protein coding sequences. The sequence of one region from five different repetitive elements was compared with the homologous region of the MgPa gene from the type strain G37 and four newly isolated M. genitalium strains. Recombination between repetitive elements of strain G37 and the MgPa operon can explain the majority of polymorphisms within our partial sequences of the MgPa genes of the new isolates. Therefore, we propose that the repetitive elements of M. genitalium provide a reservoir of sequence that contributes to antigenic variation in proteins of the MgPa cellular adhesion operon.
Resumo:
The Development Permit System has been introduce with minimal directives for establishing a decision making process. This is in opposition to the long established process for minor variances and suggests that the Development Permit System does not necessarily incorporate all of Ontario’s fundamental planning principles. From this concept, the study aimed to identify how minor variances are incorporated into the Development Permit System. In order to examine this topic, the research was based around the following research questions: • How are ‘minor variance’ applications processed within the DPS? • To what extent do the four tests of a minor variance influence the outcomes of lower level applications in the DPS approval process? A case study approach was used for this research. The single-case design employed both qualitative and quantitative research methods including a review of academic literature, court cases, and official documents, as well as a content analysis of Class 1, 1A, and 2 Development Permit application files from the Town of Carleton Place that were decided between 2011 and 2015. Upon the completion of the content analysis, it was found that minor variance issues were most commonly assigned to Class 1 applications. Planning staff generally met approval timelines and embraced their delegated approval authority, readily attaching conditions to applications in order to mitigate off-site impacts. While staff met the regulatory requirements of the DPS, ‘minor variance’ applications were largely decided on impact alone, demonstrating that the principles established by the four tests, the defining quality of the minor variance approval process, had not transferred to the Development Permit System. Alternatively, there was some evidence that the development community has not fully adjusted to the requirements of the new approvals process, as some applications were supported using a rationale containing the four tests. Subsequently, a set of four recommendations were offered which reflect the main themes established by the findings. The first two recommendations are directed towards the Province, the third to municipalities and the fourth to developers and planning consultants: 1) Amend Ontario Regulation 608/06 so that provisions under Section 4(3)(e) fall under Section 4(2). 2) Change the rhetoric from “combining elements of minor variances” to “replacing minor variances”. 3) Establish clear evaluation criteria. 4) Understand the evaluative criteria of the municipality in which you are working.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This study adopts integration and differentiation perspectives to examine why unity and diversity of organizational cultures emerged as a function of economic reform, and how subcultural differences were reflected in employees' perceptions of cultural practices. Data were gathered from in-depth interviews and a large-scale survey in two large, state-owned enterprises in north-east China. Results indicated that, although all employees were oriented towards a common set of cultural themes, the two generations of employees did not exemplify the themes in the same way. Specifically, unity was illustrated by employees' desire to maintain Harmony and to reduce Inequality. Diversity was revealed by first-generation employees' higher ratings on Loyalty, Security and even Bureaucracy. The findings are discussed in the light of traditional Chinese cultural values, political ideology and the social context. Implications are drawn for organizational cultural theory and research.
Resumo:
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.
Resumo:
Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.
Resumo:
Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
Of the ~1.7 million SINE elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which SINE transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq datasets and unique SINE DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual SINE elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ~1300 Alu loci and ~1100 MIR loci corresponding to detectable transcripts, with ~120 and ~60 respectively Alu and MIR loci expressed in at least three cell lines. In vitro transcription of selected SINEs did not reflect their in vivo expression properties, and required the native 5’-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for SINEs nested within Pol II-transcribed genes raising the possibility of an underlying mechanism for Pol II gene regulation by SINE transcriptional units. Moreover the application of our bioinformatic pipeline to both RNA-seq data of cells subjected to an in vitro pro-oncogenic stimulus and of in vivo matched tumor and non-tumor samples allowed us to detect increased Alu RNA expression as well as the source loci of such deregulation. The ability to investigate SINE transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant SINE RNAs and the assessment of SINE expression alteration under pathological conditions.
Resumo:
The point of departure for this study was a recognition of the differences in suppliers' and acquirers' judgements of the value of technology when transferred between the two, and the significant impacts of technology valuation on the establishment of technology partnerships and effectiveness of technology collaborations. The perceptions, transfer strategies and objectives, perceived benefits and assessed technology contributions as well as associated costs and risks of both suppliers and acquirers were seen to be the core to these differences. This study hypothesised that the capability embodied in technology to yield future returns makes technology valuation distinct from the process of valuing manufacturing products. The study hence has gone beyond the dimensions of cost calculation and price determination that have been discussed in the existing literature, by taking a broader view of how to achieve and share future added value from transferred technology. The core of technology valuation was argued as the evaluation of the 'quality' of the capability (technology) in generating future value and the effectiveness of the transfer arrangement for best use of such a capability. A dynamic approach comprising future value generation and realisation within the context of specific forms of collaboration was therefore adopted. The research investigations focused on the UK and China machine tool industries, where there are many technology transfer activities and the value issue has already been recognised in practice. Data were gathered from three groups: machine tool manufacturing technology suppliers in the UK and acquirers in China, and machine tool users in China. Data collecting methods included questionnaire surveys and case studies within all the three groups. The study has focused on identifying and examining the major factors affecting value as well as their interactive effects on technology valuation from both the supplier's and acquirer's point of view. The survey results showed the perceptions and the assessments of the owner's value and transfer value from the supplier's and acquirer's point of view respectively. Benefits, costs and risks related to the technology transfer were the major factors affecting the value of technology. The impacts of transfer payment on the value of technology by the sharing of financial benefits, costs and risks between partners were assessed. The close relationship between technology valuation and transfer arrangements was established by which technical requirements and strategic implications were considered. The case studies reflected the research propositions and revealed that benefits, costs and risks in the financial, technical and strategic dimensions interacted in the process of technology valuation within the context of technology collaboration. Further to the assessment of factors affecting value, a technology valuation framework was developed which suggests that technology attributes for the enhancement of contributory factors and their contributions to the realisation of transfer objectives need to be measured and compared with the associated costs and risks. The study concluded that technology valuation is a dynamic process including the generation and sharing of future value and the interactions between financial, technical and strategic achievements.
Resumo:
The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.