931 resultados para Wetland mitigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topologies of motor drive systems are studied, aiming the reduction of common-mode (CM) currents. Initially, the aspects concerning the CM currents circulation are analysed. The reason of common-mode voltages generation, the circulating paths for the resulting CM currents and their effects are discussed. Then, a non-conventional drive system configuration is proposed in order to reduce the CM currents and their effects. This configuration comprehends a non-conventional inverter module wired to a motor with an unusual connection. The cables arrangement differs from the standard solution, too. The proposed topology is compared with other ones, like the active circuit for common-mode voltages compensation. The contribution of the configuration to the reduction of CM voltages and currents and their related interferences are evaluated, based on numerical simulations. Some results are presented and discussed regarding the suitability of the proposed configuration as a potential solution to reduce the CM currents effects, when the state of art and implementation cost of drives are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the roots and could thereby increase the solubility of metals and As. These elements are released into the drainage water, taken up and accumulated in the plant roots, or translocated to the shoots. The aim was to examine the effects of plant establishment on water-covered mine tailings by answering following questions: A) Is plant establishment on water-covered mine tailings possible? B) What are the metal and As uptake and translocation properties of these plants? C) How do plants affect metal and As release from mine tailings, and which are the mechanisms involved? Carex rostrata Stokes, Eriophorum angustifolium Honck., E. scheuchzeri Hoppe, Phragmites australis (Cav.) Steud., Salix phylicifolia L. and S. borealis Fr. were used as test plants. Influences of plants on the release of As, Cd, Cu, Pb, Zn and in some cases Fe in the drainage water, and plant element uptake were studied in greenhouse experiments and in the field. The results obtained demonstrate that plant establishment are possible on water-covered unweathered mine tailings, and a suitable amendment was found to be sewage sludge. On acidic, weathered tailings, a pH increasing substance such as ashes should be added to improve plant establishment. The metal and As concentrations of the plant tissue were found to be generally higher in roots than in shoots. The uptake was dependent on the metal and As concentrations of the tailings and the release of organic acids from plant roots may have influenced the uptake. The metal release from tailings into the drainage water caused by E. angustifolium was found to depend greatly on the age and chemical properties of the tailings. However, no effects of E. angustifolium on As release was found. Water from old sulphide-, metal- and As-rich tailings with low buffering capacity were positively affected by E. angustifolium by causing higher pH and lower metal concentrations. In tailings with relatively low sulphide, metal and As contents combined with a low buffering capacity, plants had the opposite impact, i.e. a reduction in pH and elevated metal levels of the drainage water. The total release of metal and As from the tailings, i.e. drainage water together with the contents in shoots and roots, was found to be similar for C. rostrata, E. angustifolium and P. australis, except for Fe and As, where the release was highest for P. australis. The differences in metal and As release from mine tailings were mainly found to be due to the release of O2 from the roots, which changes the redox potential. Release of organic acids from the roots slightly decreased the pH, although did not have any particular influence on the release of metal and As. In conclusion, as shown here, phytostabilisation may be a successful technique for remediation of mine tailings with high element and sulphide levels, and low buffering capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is based on the use of isotopes for evaluating the efficiency of nutrients removal of a wetland, in particular nitrogen and nitrates, also between the different habitats present in the wetland. Nutrients like nitrogen and phosphorus, normally distributed as fertilizers, are among the principal causes of diffuse pollution. This is particularly important in the Adriatic Sea, which is frequently subjected to eutrophication phenomena. So it is very crucial requalification of wetland, in which there are naturally depurative processes such as denitrification and plant uptake, which allow the reduction of pollutant loads that flow in water bodies. In this study nutrient reduction is analyzed in the wetland of the Comuna drain, which waters flow in the Venice lagoon. Chemical and isotopical analyses were performed on samples of water, vegetation, soil and sediments taken in the wetlands of the Comuna drain in four different periods of the year and on data of nitrogen and phosphorus concentration obtained by the LASA of the University of Padova. Values of total nitrogen and nitrates were obtained in order to evaluate the reduction within the different systems of the wetland. Instead, the isotopic values of nitrogen and carbon were used to evaluate which process influence more nitrogen reduction and to understand the origin of the nutrient, if it is from fertilizers, waste water or sewage. To conclude, the most important process in the wetland of the Comuna drain is plant uptake, in facts the bigger percentage of nitrogen reduction was in the period of vegetative growth. So it is important the study of isotopes in plant tissues and water residence time, whose increase would allow a greater reduction of nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.