893 resultados para Wavelet Transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents two diagnostic methods for the online detection of broken bars in induction motors with squirrel-cage type rotors. The wavelet representation of a function is a new technique. Wavelet transform of a function is the improved version of Fourier transform. Fourier transform is a powerful tool for analyzing the components of a stationary signal. But it is failed for analyzing the non-stationary signal whereas wavelet transform allows the components of a non-stationary signal to be analyzed. In this paper, our main goal is to find out the advantages of wavelet transform compared to Fourier transform in rotor failure diagnosis of induction motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] El interés científico en la meditación ha crecido significativamente en las últimas décadas. La meditación es, tal vez, la práctica más adecuada para investigar las propiedades intrínsecas del Sistema nervioso autónomo (SNA), dado que conlleva un estado de total inmovilidad física y de cierto aislamiento del exterior (interiorización). En meditación, ya que no hay movimiento físico, el patrón respiratorio es ajustado según el proceso mental. Así, la modulación que ejerce la respiración sobre la frecuencia cardiaca está relacionada a la cualidad y al enfoque de la atención en la práctica. De los resultados obtenidos en nuestra investigación, podemos concluir que hay patrones específicos de variabilidad de la frecuencia cardiaca (VFC) que parecen reflejar fases o etapas en la práctica. Así, sujetos con una experiencia en meditación similar tienden a mostrar patrones análogos de variabilidad cardiaca. A medida que se progresa en la práctica meditativa, los diferentes sistemas oscilantes tienden a interaccionar entre ellos, hasta culminar con la aparición de un efecto resonante que establece un ?nuevo orden? en el sistema. Este proceso parece reflejar cambios graduales en la actividad del SNA para alcanzar un "modo de funcionamiento de bajo coste", donde los diversos mecanismos oscilatorios que intervienen en el control de la circulación sanguínea operan a la misma frecuencia. El fenómeno de resonancia implica un ?modo de funcionamiento de bajo coste? que probablemente favorece la práctica de la meditación. Así, este estado de ?orden? (aunque no sin variabilidad) podría ser considerado un atractor, al cual el sistema tiende a evolucionar cuando se haya alcanzado un nivel avanzado de mindfulness. El concepto de atractor, procedente de las modernas teorías que tratan con la dinámica de sistemas complejos no-lineales, parece mostrarse útil para describir de manera heurística el comportamiento del sistema en estados meditativos profundos. Los resultados obtenidos en esta tesis apoyan y complementan otros trabajos anteriores, además se añade la idea de una adaptación fisiológica gradual a la práctica de la meditación mindfulness, caracterizada por cambios específicos en la regulación autonómica de la VFC en las diferentes etapas de la práctica. Para el análisis de las series fisiológicas, de carácter fuertemente no lineal, se han implementado técnicas basadas en el análisis Wavelet y Dinámica Simbólica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce an analytical approach for the frequency warping transform. Criteria for the design of operators based on arbitrary warping maps are provided and an algorithm carrying out a fast computation is defined. Such operators can be used to shape the tiling of time-frequency plane in a flexible way. Moreover, they are designed to be inverted by the application of their adjoint operator. According to the proposed mathematical model, the frequency warping transform is computed by considering two additive operators: the first one represents its nonuniform Fourier transform approximation and the second one suppresses aliasing. The first operator is known to be analytically characterized and fast computable by various interpolation approaches. A factorization of the second operator is found for arbitrary shaped non-smooth warping maps. By properly truncating the operators involved in the factorization, the computation turns out to be fast without compromising accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le wavelet sono una nuova famiglia di funzioni matematiche che permettono di decomporre una data funzione nelle sue diverse componenti in frequenza. Esse combinano le proprietà dell’ortogonalità, il supporto compatto, la localizzazione in tempo e frequenza e algoritmi veloci. Sono considerate, perciò, uno strumento versatile sia per il contenuto matematico, sia per le applicazioni. Nell’ultimo decennio si sono diffuse e imposte come uno degli strumenti migliori nell’analisi dei segnali, a fianco, o addirittura come sostitute, dei metodi di Fourier. Si parte dalla nascita di esse (1807) attribuita a J. Fourier, si considera la wavelet di A. Haar (1909) per poi incentrare l’attenzione sugli anni ’80, in cui J. Morlet e A. Grossmann definiscono compiutamente le wavelet nel campo della fisica quantistica. Altri matematici e scienziati, nel corso del Novecento, danno il loro contributo a questo tipo di funzioni matematiche. Tra tutti emerge il lavoro (1987) della matematica e fisica belga, I. Daubechies, che propone le wavelet a supporto compatto, considerate la pietra miliare delle applicazioni wavelet moderne. Dopo una trattazione matematica delle wavalet, dei relativi algoritmi e del confronto con il metodo di Fourier, si passano in rassegna le principali applicazioni di esse nei vari campi: compressione delle impronte digitali, compressione delle immagini, medicina, finanza, astonomia, ecc. . . . Si riserva maggiore attenzione ed approfondimento alle applicazioni delle wavelet in campo sonoro, relativamente alla compressione audio, alla rimozione del rumore e alle tecniche di rappresentazione del segnale. In conclusione si accenna ai possibili sviluppi e impieghi delle wavelet nel futuro.