988 resultados para WaDe equazione onda keypoint detector corrispondenze punti salienti elaborazione immagini piramide
Resumo:
La qualitat d'ona en el servei elèctric
Resumo:
Control de la qualitat de la Xarxa elèctrixa
Resumo:
A square wave voltammetric method is described for the determination of acetaldehyde using the derivatization reaction with hydrazine sulphate, based on the reduction of hydrazone generated as a product that exhibits a single well-defined peak at -1.19V in acetate buffer at pH 5. Calibration graphs were obtained from 1.0 x 10-6 mol L-1 to 10 x 10-6 mol L-1 of acetaldehyde, using a reaction time of 8 min and a hidrazine concentration of 0.02 mol L-1. The detection limit was 2.38 x 10-7 mol L-1. The method was applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pre-treatment.
Resumo:
In this work a simple and versatile procedure is described for treating water samples using small polypropylene (PP) vials (4 mL) for determining heavy metals by square wave voltammetry (SWV). This procedure involves treatment with nitric acid (0.2 mol L-1) and boiling in a water-bath (~ 100 ºC). This process is completed after one hour and allows the pretreatment of several samples simultaneously. The accuracy was estimated using addition/recovery studies and certified water sample analysis, yielding an agreement near to 100%.
Resumo:
This paper reports the development of multiple square wave voltammetry and the possibilities of its use for electroanalytical determinations of organic and inorganic compounds with the improvement of the signal-to-noise ratios and detection limits 2-3 orders of magnitude lower than those obtained with conventional square wave voltammetry. The theoretical aspects and analytical applications were demonstrated as an increased analytical response (current) and application of different pulse modes for different redox processes. Preliminary results obtained for several redox systems using different electrode surfaces are shown, demonstrating also that MSWV represents an excellent alternative for the determination of ultra-traces of organic and inorganic compounds.
Resumo:
This work describes the development of electroanalytical methodologies for the determination of atrazine, ametrine and simazine by square wave voltammetry on a mercury electrode. For pure atrazine and pure ametrine, the detection limits (DL) were 3.7 and 4.3 µg L-1, respectively, while they increased to 4.8 and 6.5 µg L-1 in the presence of 3.0 x 10-6 mol L-1 of the other component (a mathematical deconvolution program was used in the mixture cases). The voltammetric response for simazine could not be separated from that of atrazine and measurements were carried out only in pure simazine solutions (DL: 7.5 µg L-1).
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
Methyl ethyl ketone (MEK) is a solvent commonly used in chemical, paint and shoe industry. The aim of this study was to develop and validate a method for urinary quantification of MEK, employing headspace solid phase micro extraction sampling (SPME) coupled to gas chromatography with flame ionization detection (GC-FID). The calibration curve (y=4.6851x-0.0011) presented good linearity with r²=0.9993. Accuracy (94-109%), intra-assay precision (4.07-5.91%) and inter-assay precision (3.03-5.62%) were acceptable. The quantification limit was 0.19 mg/L. This low cost method can be used routinely in the biological monitoring of occupational exposure to MEK, according to the requirements of the Brazilian legislation.
Resumo:
Valproic acid (VA) is a drug used to control seizures in several epileptic conditions. In VA pharmacotherapy, therapeutic drug monitoring is recommended to obtain adequate seizure control and avoid toxicity. The aim of this study was to validate a method for the determination of valproic acid in serum, employing high performance liquid chromatography with diode array detection (HPLC-DAD), after derivatization with phenacyl bromide. The calibration curve (y=0.0133x-0.0025) presented good linearity with r²=0.9999. Accuracy (101-115%), intra-assay precision (4.53-8.15%) and inter-assay precision (3.15-6.77%) were acceptable. The quantification limit was 2.0 µg/mL. The method presented similar results to enzyme immunoassay.
Resumo:
The aim of this study was to validate a method for the determination of acethaldehyde, methanol, ethanol, acetone and isopropanol employing solid-phase microextraction associated to gas chromatography with flame ionization detection. The operational conditions of SPME were optimized by response surface analysis. The calibration curves for all compounds were linear with r² > 0.9973. Accuracy (89.1-109.0%), intra-assay precision (1.8-8.5%) and inter-assay precision (2.2-8.2%) were acceptable. The quantification limit was 50 µg/mL. The method was applied to the meaurement of ethanol in blood and oral fluid of a group of volunteers. Oral fluid ethanol concentrations were not directly correlated with blood concentrations.
Resumo:
The present work describes a low-cost electrochemical "wall-jet" detector for flow analysis. The electrolytic solution enters into the cell through a tube of stainless steel (200 to 300 µm i.d), reaching to the center of the working electrode perpendicularly and then being mixed to the remaining solution in the cell, which flows under atmospheric pressure into a waste reservoir. The proposed electrochemical detector can be used with any type of working electrode, from commercial to home-made, such as glassy carbon and metallic electrodes (modified or unmodified), which enlarge the applications of the electrochemical detector.
Resumo:
A photometric procedure was developed for determination of aflatoxin B1 in peanuts by TLC-CCD technique. The quantification and detection limit were 1.2 μg kg-1 and 0.4 ng per spot, respectively, with mean recovery of 98%. The CCD camera is sufficiently sensitive to detect small changes in spots fluorescence intensity and the results for performance confirmed the efficiency of the method. Another important property of CCD detector is its linearity for a wide range of luminous stimulus determined by analysis of five-point calibration curves using the intensity of AFB1 fluorescence versus AFB1 concentration (0.8 to 4.8 ng per spot). The method was applied to the analysis of thirty nine peanut samples and aflatoxin B1 levels ranged from 16 to 115 μg kg-1. The TLC-CCD and the photometric procedure developed in this study demonstrated to be a simple and efficient tool for quantitative analyses of AFB1 in peanut samples.
Resumo:
The development of analytical methods for determination of eight pesticides of different chemical classes (trichlorfon, propanil, fipronil, propiconazole, trifloxystrobin, permethrin, difenoconazole and azoxystrobin) in sediments with gas chromatography-micro-electron capture detector (GC/µECD) and comprehensive two-dimensional gas chromatography with micro-electron capture detector (GCxGC/µECD) is described. These methods were applied to real sediment samples, and the best results were obtained using a 5% diphenyl-methylpolysiloxane column for 1D-GC. For GCxGC the same column was employed in the first dimension and a 50%-phenyl-methylpolysiloxane stationary phase was placed in the second dimension. Due to the superior peak capacity and selectivity of GCxGC, interfering matrix peaks were separated from analytes, showing a better performance of GCxGC.
Resumo:
A simple and rapid ultra-performance liquid chromatographic method for determination of oseltamivir in capsules was developed and validated. The mobile phase consisted of 5 mmol/L triethylammonium buffer (pH 3.0) and acetonitrile (70:30, v/v). Separation was performed in a Hypersil Gold® column, with octylsilil as stationary phase (100 x 2.1 mm, p.d. 1.9 µm). Chromatography run time was 1.2 min. The method presented adequate specificity, linearity, precision, ruggedness and accuracy and was adequate for determination of oseltamivir in capsules.
Resumo:
The analysis of fatty acid (FA) esters by gas chromatography and flame ionization detector (FID) normally uses the normalization method. However, if one FA is wrongly estimated, the results could be greatly affected. In this study, methodologies using internal standards and correction factors for the FID response are described. The results show that by using theoretical correction factors associated to the internal standardization, the quantitative analyses of the FAs are expressed in mass, increasing the accuracy and facilitating the interpretation and comparison of the results for foods and biodiesels.