998 resultados para WHITE ORGANIC LEDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Policies that encourage greenhouse-gas emitters to mitigate emissions through terrestrial carbon (C) offsets – C sequestration in soils or biomass – will promote practices that reduce erosion and build soil fertility, while fostering adaptation to climate change, agricultural development, and rehabilitation of degraded soils. However none of these benefits will be possible until changes in C stocks can be documented accurately and cost-effectively. This is particularly challenging when dealing with changes in soil organic C (SOC) stocks. Precise methods for measuring C in soil samples are well established, but spatial variability in the factors that determine SOC stocks makes it difficult to document change. Widespread interest in the benefits of SOC sequestration has brought this issue to the fore in the development of US and international climate policy. Here, we review the challenges to documenting changes in SOC stocks, how policy decisions influence offset documentation requirements, and the benefits and drawbacks of different sampling strategies and extrapolation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncertainty associated with how projected climate change will affect global C cycling could have a large impact on predictions of soil C stocks. The purpose of our study was to determine how various soil decomposition and chemistry characteristics relate to soil organic matter (SOM) temperature sensitivity. We accomplished this objective using long-term soil incubations at three temperatures (15, 25, and 35°C) and pyrolysis molecular beam mass spectrometry (py-MBMS) on 12 soils from 6 sites along a mean annual temperature (MAT) gradient (2–25.6°C). The Q10 values calculated from the CO2 respired during a long-term incubation using the Q10-q method showed decomposition of the more resistant fraction to be more temperature sensitive with a Q10-q of 1.95 ± 0.08 for the labile fraction and a Q10-q of 3.33 ± 0.04 for the more resistant fraction. We compared the fit of soil respiration data using a two-pool model (active and slow) with first-order kinetics with a three-pool model and found that the two and three-pool models statistically fit the data equally well. The three-pool model changed the size and rate constant for the more resistant pool. The size of the active pool in these soils, calculated using the two-pool model, increased with incubation temperature and ranged from 0.1 to 14.0% of initial soil organic C. Sites with an intermediate MAT and lowest C/N ratio had the largest active pool. Pyrolysis molecular beam mass spectrometry showed declines in carbohydrates with conversion from grassland to wheat cultivation and a greater amount of protected carbohydrates in allophanic soils which may have lead to differences found between the total amount of CO2 respired, the size of the active pool, and the Q10-q values of the soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis to be tested in this study was that the cognitive deficits that have been documented in patients with Borderline Personality Disorder (BPD) are largely the consequence of organic insult, either developmental or acquired. Using a cross–sectional design, 80 subjects (males and females) who met the criteria for BPD participated in the study. They completed a battery of neuropsychological tests and a comprehensive interview assessing organic status as well as measures of the potentially confounding factors of current levels of depression and anxiety. It was expected that BPD-patients with a probable history of organic insult would perform significantly worse than would BPD patients without such a history. Analyses of the results provided partial support for the hypothesis. Subjects with both BPD and a history of organic insult were significantly more impaired on several measures including measures of attention than were BPD only subjects. The results suggested that the impaired cognitive performance of persons diagnosed with BPD may, in part, be attributed to organic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1µm to 150µm fractions and for ethylbenzene in 150µm to >300µm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Council on Women's Health Issues (ICOWHI) is an international nonprofit association dedicated to the goal of promoting health, health care, and well-being of women and girls throughout the world through participation, empowerment, advocacy, education, and research. We are a multidisciplinary network of women's health providers, planners, and advocates from all over the globe. We constitute an international professional and lay network of those committed to improving women and girl's health and quality of life. This document provides a description of our organization mission, vision, and commitment to improving the health and well-being of women and girls globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article I reveal how texts produced by Aboriginal women scholars signify a racialised and gendered body that functions discursively, as an immediacy of racism in the form of white patriarchal epistemic violence (Lloyd 1991, 74). I demonstrate how this dominant racialised and gendered form of violence is an assertion of power that involves or arises from racialised knowledge by examining Dirk Moses' analysis of ‘Indigeneity’ via the Northern Territory Intervention (Spivak 1988).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic solar cells based on bulk heterojunction between a conductive polymer and a carbon nanostructure offer potential advantages compared to conventional inorganic cells. Low cost, light weight, flexibility and high peak power per unit weight are all features that can be considered a reality for organic photovoltaics. Although polymer/carbon nanotubes solar cells have been proposed, only low power conversion efficiencies have been reached without addressing the mechanisms responsible for this poor performance. The purpose of this work is therefore to investigate the basic interaction between carbon nanotubes and poly(3-hexylthiophene) in order to demonstrate how this interaction affects the performance of photovoltaic devices. The outcomes of this study are the contributions made to the knowledge of the phenomena explaining the behaviour of electronic devices based on carbon nanotubes and poly(3-hexylthiophene). In this PhD, polymer thin films with the inclusion of uniformly distributed carbon nanotubes were deposited from solution and characterised. The bulk properties of the composites were studied with microscopy and spectroscopy techniques to provide evidence of higher degrees of polymer order when interacting with carbon nanotubes. Although bulk investigation techniques provided useful information about the interaction between the polymer and the nanotubes, clear evidence of the phenomena affecting the heterojunction formed between the two species was investigated at nanoscale. Identifying chirality-driven polymer assisted assembly on the carbon nanotube surface was one of the major achievements of this study. Moreover, the analysis of the electrical behaviour of the heterojunction between the polymer and the nanotube highlighted the charge transfer responsible for the low performance of photovoltaic devices. Polymer and carbon nanotube composite-based devices were fabricated and characterised in order to study their electronic properties. The carbon nanotube introduction in the polymer matrix evidenced a strong electrical conductivity enhancement but also a lower photoconductivity response. Moreover, the extension of pristine polymer device characterisation models to composites based devices evidenced the conduction mechanisms related to nanotubes. Finally, the introduction of carbon nanotubes in the polymer matrix was demonstrated to improve the pristine polymer solar cell performance and the spectral response even though the power conversion efficiency is still too low.