969 resultados para WATER STABILITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrated ionic liquids (ILs) were prepared by adding appropriate amounts of water to hydrophilic ILs. Some hydrated ILs show excellent solubilizing ability for proteins, keeping the basic properties of ILs. The solubility of cytochrome c (cyt c) depended on the structure of the component ions. When component anions have oxo acid residues, the resulting hydrated ILs solubilize cyt c quite well. In such hydrated ILs, the structure and activity of cyt c is influenced by the kosmotropicity of the component ions. We synthesized ILs from various ions having different kosmotropicity, including dihydrogen phosphate (dhp), dibutylphosphate, acetate, lactate, and methanesulfonate as anions. The activity of the dissolved cyt c depends on the permutations of kosmotropicity of the component ions. cyt c shows no structural change and retains its activity when dissolved in the hydrated choline dhp, which is an excellent combination of chaotropic cation and kosmotropic anion. Furthermore, cyt c dissolved in the hydrated choline dhp remained in a native state and was active after 18 months of storage at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple biofilm model was developed to describe the growth of bacteria in drinking water biofilms and the subsequent interactions with disinfectant residuals incorporating the important processes, such as attachment of free bacteria to the biofilm on a wall surface, detachment of bacteria from the biofilm, growth of biofilm bacteria with chloramine inhibition, chloramine decay in the bulk water phase, and chloramine decay due to biofilm bacteria and wall surfaces. The model is useful in evaluating the biological stability of different waters, as it can predict concentration of organic substances in water. In addition, the model can be used to predict the bacterial growth and biofilm decay in distribution systems. A model of this kind is a useful tool in developing system management strategies to ultimately improve drinking water quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colistin is an amphiphilic antibiotic that has re-emerged into clinical use due to the increasing prevalence of difficult-to-treat Gram-negative infections. The existence of self-assembling colloids in solutions of colistin and its derivative prodrug, colistin methanesulfonate (CMS), was investigated. Colistin and CMS reduced the air−water interfacial tension, and dynamic light scattering (DLS) studies showed the existence of 2.07 ± 0.3 nm aggregates above 1.5 mM for colistin and of 1.98 ± 0.36 nm aggregates for CMS above 3.5 mM (mean ± SD). Above the respective critical micelle concentrations (CMC) the solubility of azithromycin, a hydrophobic antibiotic, increased approximately linearly with increasing surfactant concentration (5:1 mol ratio colistin:azithromycin), suggestive of hydrophobic domains within the micellar cores. Rapid conversion of CMS to colistin occurred below the CMC (60% over 48 h), while conversion above the CMC was less than 1%. The formation of colistin and CMS micelles demonstrated in this study is the proposed mechanism for solubilization of azithromycin and the concentration-dependent stability of CMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of water films has been investigated with a Mysels-Scheludko type film balance. Minor trace impurities in water do not affect the lifetime of water films under vapor saturation, but significantly influence the stability in free evaporation. Trace amounts of positively adsorbed contaminants induce Marangoni-driven flow that destabilizes films under evaporation conditions whereas negatively adsorbed electrolytes actually prolong stability by reversing interfacial tension gradients and driving a steady circulation within the film. At high thinning rates, pure-water films develop exotic-appearing flow patterns and break due to a strong coupling between hydrodynamic and interfacial tensiongradient adsorption stresses. The most dominant factor of transient film stabilization in dynamic conditions under evaporation is a surface tension gradient created in the film. We discuss surface tension gradients in transient films created by temperature differences, impurity concentration, and expansion of the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440–528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe the surface modification of porous polyethylene by the adsorption of polyelectrolyte mutilayers on plasma‐activated polyethylene surfaces. We use the migration rates of deionized water as an effective alternative to contact angle measurements in order to probe the interfacial energy of the modified surface. The newly acquired surface properties that result from the surface modification are monitored with respect to several key chemical and environmental variables. These variables were chosen so that they will reflect some of the common handling procedures in a laboratory or health care environments, such as exposure to solvents of different pH and polarities, and fluctuations of ambient temperature over an extended period, i.e., “shelf‐life” duration. The stability of these surface properties of the modified membranes is a fundamental requirement for their potential use in a variety of applications involving lateral flow and binding media for bio‐assays. In this paper, we show that a membrane modified by a polyelectrolyte monolayer is more stable than a membrane that has undergone plasma activation alone, while a membrane modified by a polyelectrolyte bilayer exhibits retention of the enhanced surface hydrophilic properties under various conditions and over a long period of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. © 2014 Biophysical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water supply and demand planning is often conducted independently of social and economic strategies. There are presently no comprehensive life-cycle approaches to modelling urban water balances that incorporate economic feedbacks, such as tariff adjustment, which can in turn create a financing capacity for investment responses to low reservoir levels. This paper addresses this gap, and presents a system dynamics model that augments the usual water utility representation of the physical linkages of water grids, by adding inter-connected feedback loops in tariff structures, demand levels and financing capacity. The model, applied in the south-east Queensland region in Australia, enables simulation of alternatives and analysis of stocks and flows around a grid or portfolio of bulk supplies including an increasing proportion of rain-independent desalination plants. Such rain-independent water production plants complement the rain-dependent sources in the region and can potentially offer indefinite water security at a price. The study also shows how an alternative temporary drought pricing regime not only defers costly bulk supply infrastructure but actually generates greater price stability than traditional pricing approaches. The model has implications for water supply planners seeking to pro-actively plan, justify and finance portfolios of rain-dependent and rain-independent bulk water supply infrastructure. Interestingly, the modelling showed that a temporary drought pricing regime not only lowers the frequency and severity of water insecurity events but also reduces the long-run marginal cost of water supply for the region when compared to traditional reactive planning approaches that focus on restrictions to affect demand in scarcity periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report water-soluble complexes of an acrylamide copolymer and ionic liquids for inhibiting shale hydration. The copolymer, denoted as PAAT, was synthesised via copolymerisation of acrylamide (AM), acrylic acid (AA) and N,N-diallyl-4-methylbenzenesulfonamide (TCDAP), and the ionic liquids used were 3-methyl imidazoliumcation-based tetrafluoroborates. X-ray diffraction showed that compared with commonly used KCl, the water-soluble complex of PAAT with 2 wt% ionic liquid 1-methyl-3-H-imidazolium tetrafluoroborate (HmimBF4) could remarkably reduce the d-spacing of sodium montmorillonite in water from 19.24 to 13.16 Å and effectively inhibit clay swelling. It was also found that the PAAT-HmimBF4 complex with 2 wt% HmimBF4 could retain 75% of the shale indentation hardness and increase the anti-swelling ratio to 85%. 13C NMR revealed that there existed interactions between PAAT and HmimBF4. Moreover, the thermal stability of the PAAT-HmimBF4 complex is superior to PAAT, suggesting that this water-soluble complex can be used to inhibit clay and shale hydration in high-temperature oil and gas wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a facile method to prepare thermally stable and mechanically robust crosslinked lyotropic liquid crystals (LLCs) through incorporation of a polymerizable amphiphile into a binary LLC system comprising commercially available surfactant Brij 97 and water. Thermal stability and mechanical properties of the polymerized LLCs were significantly enhanced after polymerization of the incorporated polymerizable surfactant. The effect of incorporating a polymerizable amphiphile on the phase behavior of the LLC system was studied in detail. In situ photo-rheology was used to monitor the change in the mechanical properties of the LLCs, namely the storage modulus, loss modulus, and viscosity, upon polymerization. The retention of the LLC nanostructures was evaluated by small angle X-ray scattering (SAXS). The ability to control the thermal stability and mechanical strength of LLCs simply by adding a polymerizable amphiphile, without tedious organic synthesis or harsh polymerization conditions, could prove highly advantageous in the preparation of robust nanomaterials with well-defined periodic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report a novel acrylamide copolymer with antimicrobial property as an enhanced oil recovery chemical. The copolymer was synthesized from acrylamide (AM), acrylic acid (AA) and 2-((2-(acryloyloxy)ethyl)dimethylammonio)ethyl sulfite (ADMES) using oxidation-reduction initiation system. Subsequently, the copolymer AM/AA/ADMES was evaluated and characterized on several aspects such as IR, 1H NMR, intrinsic viscosity, and dissolubility. The AM/AA/ADMES solution exerted remarkable thickening ability, salt tolerance ability and viscoelasticity. In addition, the rheological properties, temperature resistance ability and long-term stability of AM/AA/ADMES were investigated systematically in the presence of sulfate-reducing bacteria and relatively low viscosity loss could be obtained compared to partially hydrolyzed polyacrylamide. On the basis of core flooding experiments, AM/AA/ADMES was found to be a valuable prospect with 10.5 resistance factor, 4.6 residual resistance factor and up to 11.0% enhanced oil recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superhydrophobic cotton fabrics with a very low contact angle hysteresis were prepared using a single-pot coating solution comprising SU-8 (a negative photoresist), a fluorinated alkyl silane and silica nanoparticles. The fabric was treated using a dip-coating technique and subsequently cured under UV light. The coated fabric showed excellent superhydrophobicity with a water contact angle as high as 163° and a sliding angle as low as 2°. The coating was durable enough to withstand 100 laundry cycles. It also had excellent stability against long immersion times in organic solvents, and acid and base solutions.