956 resultados para W-CDMA CAPACITY ANALYSIS
Resumo:
Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.
Resumo:
The paper focuses on the analysis of radial-gated spillways, which is carried out by the solution of a numerical model based on the finite element method (FEM). The Oliana Dam is considered as a case study and the discharge capacity is predicted both by the application of a level-set-based free-surface solver and by the use of traditional empirical formulations. The results of the analysis are then used for training an artificial neural network to allow real-time predictions of the discharge in any situation of energy head and gate opening within the operation range of the reservoir. The comparison of the results obtained with the different methods shows that numerical models such as the FEM can be useful as a predictive tool for the analysis of the hydraulic performance of radial-gated spillways.
Resumo:
The simulation of design basis accidents in a containment building is usually conducted with a lumped parameter model. The codes normally used by Westinghouse Electric Company (WEC) for that license analysis are WGOTHIC or COCO, which are suitable to provide an adequate estimation of the overall peak temperature and pressure of the containment. However, for the detailed study of the thermal-hydraulic behavior in every room and compartment of the containment building, it could be more convenient to model the containment with a more detailed 3D representation of the geometry of the whole building. The main objective of this project is to obtain a standard PWR Westinghouse as well as an AP1000® containment model for a CFD code to analyze the thermal-hydraulic detailed behavior during a design basis accident. In this paper the development and testing of both containment models is presented.
Resumo:
Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.
Resumo:
Mode of access: Internet.
Resumo:
"Aristophanic literature": p. [lxxxv]-xciv.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Includes index.