860 resultados para Volatility Models, Volatility, Equity Markets
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
We propose a method denoted as synthetic portfolio for event studies in market microstructure that is particularly interesting to use with high frequency data and thinly traded markets. The method is based on Synthetic Control Method and provides a robust data driven method to build a counterfactual for evaluating the effects of the volatility call auctions. We find that SMC could be used if the loss function is defined as the difference between the returns of the asset and the returns of a synthetic portfolio. We apply SCM to test the performance of the volatility call auction as a circuit breaker in the context of an event study. We find that for Colombian Stock Market securities, the asynchronicity of intraday data reduces the analysis to a selected group of stocks, however it is possible to build a tracking portfolio. The realized volatility increases after the auction, indicating that the mechanism is not enhancing the price discovery process.
Resumo:
Understanding why market manipulation is conducted, under which conditions it is the most profitable and investigating the magnitude of these practices are crucial questions for financial regulators. Closing price manipulation induced by derivatives’ expiration is the primary subject of this thesis. The first chapter provides a mathematical framework in continuous time to study the incentive to manipulate a set of securities induced by a derivative position. An agent holding a European-type contingent claim, depending on the price of a basket of underlying securities, is considered. The agent can affect the price of the underlying securities by trading on each of them before expiration. The elements of novelty are at least twofold: (1) a multi-asset market is considered; (2) the problem is solved by means of both classic optimisation and stochastic control techniques. Both linear and option payoffs are considered. In the second chapter an empirical investigation is conducted on the existence of expiration day effects on the UK equity market. Intraday data on FTSE 350 stocks over a six-year period from 2015-2020 are used. The results show that the expiration of index derivatives is associated with a rise in both trading activity and volatility, together with significant price distortions. The expiration of single stock options appears to have little to no impact on the underlying securities. The last chapter examines the existence of patterns in line with closing price manipulation of UK stocks on option expiration days. The main contributions are threefold: (1) this is one of the few empirical studies on manipulation induced by the options market; (2) proprietary equity orderbook and transaction data sets are used to define manipulation proxies, providing a more detailed analysis; (3) the behaviour of proprietary trading firms is studied. Despite the industry concerns, no evidence is found of this type of manipulative behaviour.
Resumo:
Many business-oriented software applications are subject to frequent changes in requirements. This paper shows that, ceteris paribus, increases in the volatility of system requirements decrease the reliability of software. Further, systems that exhibit high volatility during the development phase are likely to have lower reliability during their operational phase. In addition to the typically higher volatility of requirements, end-users who specify the requirements of business-oriented systems are usually less technically oriented than people who specify the requirements of compilers, radar tracking systems or medical equipment. Hence, the characteristics of software reliability problems for business-oriented systems are likely to differ significantly from those of more technically oriented systems.
Resumo:
This paper investigates the robustness of a range of short–term interest rate models. We examine the robustness of these models over different data sets, time periods, sampling frequencies, and estimation techniques. We examine a range of popular one–factor models that allow the conditional mean (drift) and conditional variance (diffusion) to be functions of the current short rate. We find that parameter estimates are highly sensitive to all of these factors in the eight countries that we examine. Since parameter estimates are not robust, these models should be used with caution in practice.
Resumo:
Financial literature and financial industry use often zero coupon yield curves as input for testing hypotheses, pricing assets or managing risk. They assume this provided data as accurate. We analyse implications of the methodology and of the sample selection criteria used to estimate the zero coupon bond yield term structure on the resulting volatility of spot rates with different maturities. We obtain the volatility term structure using historical volatilities and Egarch volatilities. As input for these volatilities we consider our own spot rates estimation from GovPX bond data and three popular interest rates data sets: from the Federal Reserve Board, from the US Department of the Treasury (H15), and from Bloomberg. We find strong evidence that the resulting zero coupon bond yield volatility estimates as well as the correlation coefficients among spot and forward rates depend significantly on the data set. We observe relevant differences in economic terms when volatilities are used to price derivatives.
Resumo:
Most financial and economic time-series display a strong volatility around their trends. The difficulty in explaining this volatility has led economists to interpret it as exogenous, i.e., as the result of forces that lie outside the scope of the assumed economic relations. Consequently, it becomes hard or impossible to formulate short-run forecasts on asset prices or on values of macroeconomic variables. However, many random looking economic and financial series may, in fact, be subject to deterministic irregular behavior, which can be measured and modelled. We address the notion of endogenous volatility and exemplify the concept with a simple business-cycles model.
Resumo:
This article presents a Markov chain framework to characterize the behavior of the CBOE Volatility Index (VIX index). Two possible regimes are considered: high volatility and low volatility. The specification accounts for deviations from normality and the existence of persistence in the evolution of the VIX index. Since the time evolution of the VIX index seems to indicate that its conditional variance is not constant over time, I consider two different versions of the model. In the first one, the variance of the index is a function of the volatility regime, whereas the second version includes an autoregressive conditional heteroskedasticity (ARCH) specification for the conditional variance of the index.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.