213 resultados para Vo2max


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night-1 at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02). In comparison to baseline, Hbmass increased by 1.2% (±1.4%) in the lowHH group, 2.6% (±1.8%) in lowHH+NHnight, and there was a decrease of 0.9% (±4.9%) in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of different exercise modalities on high sensitivity-C reactive protein (hs-CRP) and other inflammatory markers in patients with type 2 diabetes and the metabolic syndrome. Eighty-two patients were randomized into 4 groups: sedentary control (A); receiving counseling to perform low-intensity physical activity (B); performing prescribed and supervised high-intensity aerobic (C) or aerobic + resistance (D) exercise (with the same caloric expenditure) for 12 months. Evaluation of leisure-time physical activity and assessment of physical fitness, cardiovascular risk factors and inflammatory biomarkers was performed at baseline and every 3 months. Volume of physical activity increased and HbA1c decreased in Groups B–D. VO2max, HOMA-IR index, HDL-cholesterol, waist circumference and albuminuria improved in Groups C and D, whereas strength and flexibility improved only in Group D. Levels of hs-CRP decreased in all three exercising groups, but the reduction was significant only in Groups C and D, and particularly in Group D. Changes in VO2max and the exercise modalities were strong predictors of hs-CRP reduction, independent of body weight. Leptin, resistin and interleukin-6 decreased, whereas adiponectin increased in Groups C and D. Interleukin-1β, tumor necrosis factor-α and interferon-γ decreased, whereas anti-inflammatory interleukin-4 and 10 increased only in Group D. In conclusion, physical exercise in type 2 diabetic patients with the metabolic syndrome is associated with a significant reduction of hs-CRP and other inflammatory and insulin resistance biomarkers, independent of weight loss. Long-term high-intensity (preferably mixed) training, in addition to daytime physical activity, is required to obtain a significant anti-inflammatory effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the validity and reliability of surface electromyography (EMG) as a new non-invasive determinant of the metabolic response to incremental exercise in elite cyclists. The relation between EMG activity and other more conventional methods for analysing the aerobic-anaerobic transition such as blood lactate measurements (lactate threshold (LT) and onset of blood lactate accumulation (OBLA)) and ventilatory parameters (ventilatory thresholds 1 and 2 (VT1 and VT2)) was studied.Twenty eight elite road cyclists (age 24 (4) years; VO2MAX 69.9 (6.4) ml/kg/min; values mean (SD)) were selected as subjects. Each of them performed a ramp protocol (starting at 0 W, with increases of 5 W every 12 seconds) on a cycle ergometer (validity study). In addition, 15 of them performed the same test twice (reliability study). During the tests, data on gas exchange and blood lactate levels were collected to determine VT1, VT2, LT, and OBLA. The root mean squares of EMG signals (rms-EMG) were recorded from both the vastus lateralis and the rectus femoris at each intensity using surface electrodes. Results - A two threshold response was detected in the rms-EMG recordings from both muscles in 90% of subjects, with two breakpoints, EMG(T1) and EMG(T2), at around 60-70% and 80-90% of VO2MAX respectively. The results of the reliability study showed no significant differences (p > 0.05) between mean values of EMG(T1) and EMG(T2) obtained in both tests. Furthermore, no significant differences (p > 0.05) existed between mean values of EMG(T1), in the vastus lateralis and rectus femoris, and VT1 and LT (62.8 (14.5) and 69.0 (6.2) and 64.6 (6.4) and 68.7 (8.2)% of VO2MAX respectively), or between mean values of EMG(T2), in the vastus lateralis and rectus femoris, and VT2 and OBLA (86.9 (9.0) and 88.0 (6.2) and 84.6 (6.5) and 87.7 (6.4)% of VO2MAX respectively). Rms-EMG may be a useful complementary non-invasive method for analysing the aerobic-anaerobic transition (ventilatory and lactate thresholds) in elite cyclists.