920 resultados para Virus Physiological Processes
Resumo:
BACKGROUND Histamine is an ubiquitous inflammatory mediator of numerous physiological processes. Histamine and its receptors have been implicated in multiple sclerosis (MS) disease pathogenesis. We prospectively enrolled 36 MS patients and 19 age and gender-matched healthy volunteers for cerebrospinal fluid (CSF) histamine analysis. FINDINGS CSF HISTAMINE LEVELS IN MS PATIENT SAMPLES WERE SIGNIFICANTLY HIGHER (MEDIAN: 35.6 pg/ml) than in controls (median: 5.5 pg/ml; Beta = 0.525, p < 0.001). In addition, histamine increased with age (Pearson's correlation, p < 0.003). CONCLUSIONS Histamine may be an important factor for both the initiation and maintenance of chronic inflammatory diseases of the central nervous system. Our observation encourages a deeper investigation of the role of histamine in MS.
Importance of cholesterol and cholesterol transporters in the placental trophoblast during pregnancy
Resumo:
Membrane transporters are essential during pregnancy, being a core component of the exchange of nutrients, gases, and metabolic products between the mother and the developing fetus. Important compounds to be transported include vitamins and minerals, amino acids, glucose, as well as cholesterol. Cholesterol transport across the plasma membrane is mediated mainly by members of the ATP-binding cassette (ABC) transporter family. Cholesterol is present in every cell of the body, where it helps maintain the integrity of cell membranes and also plays an important role in cell signaling events. Cholesterol also acts as a precursor for the biosynthesis of steroids that include sex hormones, glucocorticoids, mineralcorticoids, as well as bile acids and oxysterols. Cholesterol transport is therefore crucial for a host of different physiological processes. The following chapter addresses the involvement and importance of ABC transporters in these different processes. The critical role that ABC transporters Play for a successful pregnancy outcome is highlighted by pathological processes that result malfunction of cholesterol transport during pregnancy. Avenues of future research are also described, which may help to further delineate the function and mechanism of action of ABC transporters.
Resumo:
Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases.
Resumo:
In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant Ki = 20 to 35 μM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.
Resumo:
Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^
Resumo:
Acute diarrhea is the most common medical problem in the developing countries. Infectious agents are responsible for a majority of cases of acute diarrhea. Knowing the cause of acute diarrhea is important to developing plans for disease prevention, control and therapy. Acute diarrhea is caused by many viruses, bacteria and parasites. ^ Travelers to developing countries of the world commonly develop diarrhea as a result of eating contaminated food or drinking contaminated water. About 30-50% of travelers who travel from industrialized countries like United States to the developing countries are at risk of developing diarrhea. High risk areas for travelers' diarrhea are Mexico, Latin America and Southeast Asia. Public restaurants are the common sites for exposure to this type of food-borne infectious disease in travelers. Food becomes contaminated when they are handled by people with fecal content on their hands. ^ The importance of Diffusely Adherent Escherichia Coli (DAEC) in travelers to these areas has not been well studied. Some of the studies looking at DAEC have shown the organism to be present in children without symptoms. Other studies have shown a relationship between DAEC infection and presence of symptoms. I have selected this topic because the patho-physiological processes in DAEC infection that allow intestinal and extra-intestinal infections to develop are not fully understood. DAEC related acute diarrhea is a relatively new topic of public health significance. There is a limited number of studies regarding the virulence and pathogenic mechanisms of DAEC. The presumed virulence factor of the organism is diffuse attachment to the intestinal lining of the infected host. However more research needs to be done to identify the pathogenic mechanisms and virulence factors associated with DAEC infection for better treatment planning and diarrhea prevention. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^
Resumo:
La hipoacusia se define como la disminución de la percepción auditiva, la cual constituye la vía habitual para la adquisición el lenguaje. Se trata de un problema relevante en la infancia temprana, dado que el logro de capacidades y habilidades intelectuales y sociales están ligados a un desarrollo adecuado de la audición como principal vía de aprendizaje. La audición, junto con el resto de los sentidos permite el establecer relaciones sociales y del individuo con su entorno. Es uno de los principales procesos fisiológicos que posibilita a los niños el aprendizaje, siendo de suma importancia para el desarrollo del pensamiento. Por ello es importante analizar las diferentes aristas que intervienen en la prevención, promoción y atención primaria y secundaria de dicha afección. A continuación analizaremos el Programa Nacional de Detección Temprana de Hipoacusias (su legislación, gestión y funcionalización), la importancia de una adecuada información a los padres o responsables del niño hipoacúsico, la perspectiva de la cultura sorda y la perspectiva de la oralización de pacientes sordos mediante el implante coclear en la infancia.
Resumo:
Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= "getting worse") temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.
Resumo:
Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 > 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
Resumo:
The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.
Resumo:
Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.
Resumo:
In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (-0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of 0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades.
Resumo:
Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, 18O/16O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature (Epstein et al., 1953). In contrast, 13C/12C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis (Spero et al., 1991, doi:10.1029/91PA02022). These geochemical proxies have been used with analyses of foraminifera shells to reconstruct global ice volumes (Shackleton and Opdyke, 1973, doi:10.1016/0033-5894(73)90052-5), surface and deep ocean temperatures (Broecker, 1986, doi:10.1016/0033-5894(86)90087-6; Labeyrie et al., 1987, doi:10.1038/327477a0), ocean circulation changes (Duplessy et al., 1988, doi:10.1029/PA003i003p00343) and glacial-interglacial exchange between the terrestrial and oceanic carbon pools (Sackleton, 1977). Here, we report experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO3 2-]. Because glacial-period oceans had higher pH and [CO3 2-] than today (Sanyal et al., 1995, doi:10.1038/373234a0), these new relationships confound the standard interpretation of glacial foraminiferal stable-isotope data. In particular, the hypothesis that the glacial-interglacial shift in the 13C/12C ratio was due to a transfer of terrestrial carbon into the ocean(Shackleton ,1977) can be explained alternatively by an increase in ocean alkalinity (Lea et al., 1996). A carbonate-concentration effect could also help explain some of the extreme stable-isotope variations during the Proterozoic and Phanerozoic aeons (Kaufman et al., 1993, doi:10.1016/0012-821X(93)90254-7).
Resumo:
Homeostatic regulation allows organisms to secure basic physiological processes in a varying environment. To counteract fluctuations in ambient carbonate system speciation due to elevated seawater pCO2 (hypercapnia), many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigated the effects of hypercapnia on acid-base and ammonia regulation in the Dungeness crab, Metacarcinus magister on the whole animal and isolated gill levels. Hemolymph pCO2 and [HCO3]- increased in M. magister acclimated to elevated pCO2 (330 Pa), while pH remained stable. Additionally, hemolymph [Na+], [Ca2+], and [SO4]2- were significantly increased. When challenged with varying pH during gill perfusion, the pH of the artificial hemolymph remained relatively unchanged. Overall, ammonia production and excretion, as well as oxygen consumption, were reduced in crabs acclimated to elevated pCO2, demonstrating that either (amino acid) oxidation is reduced in response to this particular stress, or nitrogenous wastes are excreted in an alternative form.