962 resultados para Viability equation
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
Over the past years, cardiovascular magnetic resonance (CMR) has proven its efficacy in large clinical trials, and consequently, the assessment of function, viability, and ischaemia by CMR is now an integrated part of the diagnostic armamentarium in cardiology. By combining these CMR applications, coronary artery disease (CAD) can be detected in its early stages and this allows for interventions with the goal to reduce complications of CAD such as infarcts and subsequently chronic heart failure (CHF). As the CMR examinations are robust and reproducible and do not expose patients to radiation, they are ideally suited for repetitive studies without harm to the patients. Since CAD is a chronic disease, the option to monitor CAD regularly by CMR over many decades is highly valuable. Cardiovascular magnetic resonance also progressed recently in the setting of acute coronary syndromes. In this situation, CMR allows for important differential diagnoses. Cardiovascular magnetic resonance also delineates precisely the different tissue components in acute myocardial infarction such as necrosis, microvascular obstruction (MVO), haemorrhage, and oedema, i.e. area at risk. With these features, CMR might also become the preferred tool to investigate novel treatment strategies in clinical research. Finally, in CHF patients, the versatility of CMR to assess function, flow, perfusion, and viability and to characterize tissue is helpful to narrow the differential diagnosis and to monitor treatment.
Resumo:
Twenty four strains of the entomopathogenic fungi (Hyphomycetes) Beauveria bassiana, Metarrhizium anisopliae, Nomuraea rileyi, Paecilomyces farinosus, P. fumosoroseus and P. lilacinus, maintained in the culture collection of Embrapa-Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia (Cenargen) and preserved by lyophilization and in liquid nitrogen, had their conidial viability assessed. Germination rates of 16- to 84-month-old cultures stored in liquid nitrogen decreased, on average, less than 13.3%. For 29- to 49-month-old cultures preserved by lyophilization, the viability loss ranged, on average, from 28.6 to 94.5%. The results demonstrated the efficiency of the tested methods, especially liquid nitrogen, in preserving the viability of entomopathogenic fungi.
Resumo:
The aim of this work was to evaluate the influence of the enzyme cholesterol oxidase (Coase) on emergence and viability of larvae of the cotton boll weevil (Anthonomus grandis Boheman, 1843). A series of bioassays was performed with eggs and neonate larvae exposed to different enzyme concentrations in artificial diet. Larval survival was affected at all enzyme concentrations tested, and the six-day LD50 was 53 mug/mL (CI 95%: 43-59). Coase also interfered with hatching of larvae after eggs were floated for 15 min in Coase solution at different concentrations. Observations at the light and electronic microscopic level of midguts from larvae fed on artificial diet containing 53 mug/mL of Coase and collected at six days revealed highly vacuolated regions in the epithelial cells as well as partial degradation of the basal membrane and microvilli.
Resumo:
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Resumo:
Several molecular therapies require the implantation of cells that secrete biotherapeutic molecules and imaging the location and microenvironment of the cellular implant to ascertain its function. We demonstrate noninvasive in vivo magnetic resonance imaging (MRI) of self-assembled microcontainers that are capable of cell encapsulation. Negative contrast was obtained to discern the microcontainer with MRI; positive contrast was obtained in the complete absence of background signal. MRI on a clinical scanner highlights the translational nature of this research. The microcontainers were loaded with cells that were dispersed in an extracellular matrix, and implanted both subcutaneously and in human tumor xenografts in SCID mice. MRI was performed on the implants, and microcontainers retrieved postimplantation showed cell viability both within and proximal to the implant. The microcontainers are characterized by their small size, three dimensionality, controlled porosity, ease of parallel fabrication, chemical and mechanical stability, and noninvasive traceability in vivo.
Resumo:
Cilengitide is a cyclic peptide antagonist of integrins alphavbeta3 and alphavbeta5 that is currently being evaluated as a novel therapeutic agent for recurrent and newly diagnosed glioblastoma. Its mode of action is thought to be mainly antiangiogenic but may include direct effects on tumor cells, notably on attachment, migration, invasion, and viability. In this study we found that, at clinically relevant concentrations, cilengitide (1-100 microM) induces detachment in some but not all glioma cell lines, while the effect on cell viability is modest. Detachment induced by cilengitide could not be predicted by the level of expression of the cilengitide target molecules, alphavbeta3 and alphavbeta5, at the cell surface. Glioma cell death induced by cilengitide was associated with the generation of caspase activity, but caspase activity was not required for cell death since ectopic expression of cytokine response modifier (crm)-A or coexposure to the broad-spectrum caspase inhibitor zVAD-fmk was not protective. Moreover, forced expression of the antiapoptotic protein marker Bcl-X(L) or altering the p53 status did not modulate cilengitide-induced cell death. No consistent effects of cilengitide on glioma cell migration or invasiveness were observed in vitro. Preliminary clinical results indicate a preferential benefit from cilengitide added to temozolomide-based radiochemotherapy in patients with O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter methylation. Accordingly, we also examined whether the MGMT status determines glioma cell responses to cilengitide alone or in combination with temozolomide. Neither ectopic expression of MGMT in MGMT-negative cells nor silencing the MGMT gene in MGMT-positive cells altered glioma cell responses to cilengitide alone or to cilengitide in combination with temozolomide. These data suggest that the beneficial clinical effects derived from cilengitide in vivo may arise from altered perfusion, which promotes temozolomide delivery to glioma cells.
Resumo:
OBJECTIVE: Our aim was to evaluate a fluorescence-based enhanced-reality system to assess intestinal viability in a laparoscopic mesenteric ischemia model. MATERIALS AND METHODS: A small bowel loop was exposed, and 3 to 4 mesenteric vessels were clipped in 6 pigs. Indocyanine green (ICG) was administered intravenously 15 minutes later. The bowel was illuminated with an incoherent light source laparoscope (D-light-P, KarlStorz). The ICG fluorescence signal was analyzed with Ad Hoc imaging software (VR-RENDER), which provides a digital perfusion cartography that was superimposed to the intraoperative laparoscopic image [augmented reality (AR) synthesis]. Five regions of interest (ROIs) were marked under AR guidance (1, 2a-2b, 3a-3b corresponding to the ischemic, marginal, and vascularized zones, respectively). One hour later, capillary blood samples were obtained by puncturing the bowel serosa at the identified ROIs and lactates were measured using the EDGE analyzer. A surgical biopsy of each intestinal ROI was sent for mitochondrial respiratory rate assessment and for metabolites quantification. RESULTS: Mean capillary lactate levels were 3.98 (SD = 1.91) versus 1.05 (SD = 0.46) versus 0.74 (SD = 0.34) mmol/L at ROI 1 versus 2a-2b (P = 0.0001) versus 3a-3b (P = 0.0001), respectively. Mean maximal mitochondrial respiratory rate was 104.4 (±21.58) pmolO2/second/mg at the ROI 1 versus 191.1 ± 14.48 (2b, P = 0.03) versus 180.4 ± 16.71 (3a, P = 0.02) versus 199.2 ± 25.21 (3b, P = 0.02). Alanine, choline, ethanolamine, glucose, lactate, myoinositol, phosphocholine, sylloinositol, and valine showed statistically significant different concentrations between ischemic and nonischemic segments. CONCLUSIONS: Fluorescence-based AR may effectively detect the boundary between the ischemic and the vascularized zones in this experimental model.
Resumo:
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move
Resumo:
The objective of this work was to adapt the application of electrolytic conductivity and potassium leaching tests to assess the viability of cryopreserved embryos of 'Anão Verde do Brasil de Jiqui' (AVeJBr) coconut. The zygotic embryos were excised, sterilized and subjected to four cryoprotectant treatments combined with three incubation times (12, 16 and 20 hours), totaling 12 treatments. The pre-treatment of mature zygotic embryos of AVeJBr coconut using a cryoprotectant with 1.75 mol L-1 of sucrose + 15% glycerol for 12 and 16 hours promoted lower embryo humidity and increased viability in electrolytic conductivity and potassium leaching tests. Samples with ten embryos are sufficient for electrolytic conductivity analysis in cryopreserved or non-cryopreserved AVeJBr coconut zygotic embryos. The 4 to 8 hour imbibition period of the embryos is promising for the electrolytic conductivity analysis of non-cryopreserved mature zygotic embryos of AVeJBr coconut.
Resumo:
The objective of this work was to evaluate the effect of different cryoprotectants on the viability of dourado (Salminus brasiliensis) embryos. Ten cryoprotectant solutions were tested. For each solution, 300 embryos were selected at the closing of the blastopore stage, and 300 more embryos were used as a negative control. After cooling (-8ºC for 6 hours), the embryos were rehydrated directly in the incubator until hatching. The best result is obtained with the cryoprotectant solution containing 9% methanol associated with 17% sucrose, resulting in a larvae hatching rate of 67.06%.
Resumo:
We study all the symmetries of the free Schr odinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.