865 resultados para Vehicule routing
Resumo:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
Resumo:
La presente tesi è il frutto di un lavoro di ricerca sugli aspetti che rendono gli algoritmi esatti per CVRP presenti in letteratura poco efficienti su certi tipi di istanze. L'ipotesi iniziale era che gli algoritmi incontrassero difficoltà di risoluzione su istanze di CVRP dotate di un numero limitato di soluzioni di Bin Packing. Allo scopo di verificare la validità di tale supposizione, sono state create istanze di Bin Packing aventi poche soluzioni ottime e sono stati aggiunti tre differenti schemi di routing. Le istanze CVRP sono state risolte con l'algoritmo del dr. Roberti, già presente in letteratura.
Resumo:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
Resumo:
The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo (2003) to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms. This work is organized as follows: Chapter 1 describes a detailed overview and a methodological review of the literature for the the Capacitated Location-Routing Problem (CLRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP. Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP. Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.
Resumo:
Il problema della consegna di prodotti da un deposito/impianto ai clienti mediante una flotta di automezzi è un problema centrale nella gestione di una catena di produzione e distribuzione (supply chain). Questo problema, noto in letteratura come Vehicle Routing Problem (VRP), nella sua versione più semplice consiste nel disegnare per ogni veicolo disponibile presso un dato deposito aziendale un viaggio (route) di consegna dei prodotti ai clienti, che tali prodotti richiedono, in modo tale che (i) la somma delle quantità richieste dai clienti assegnati ad ogni veicolo non superi la capacità del veicolo, (ii) ogni cliente sia servito una ed una sola volta, (iii) sia minima la somma dei costi dei viaggi effettuati dai veicoli. Il VRP è un problema trasversale ad una molteplicità di settori merceologici dove la distribuzione dei prodotti e/o servizi avviene mediante veicoli su gomma, quali ad esempio: distribuzione di generi alimentari, distribuzione di prodotti petroliferi, raccolta e distribuzione della posta, organizzazione del servizio scuolabus, pianificazione della manutenzione di impianti, raccolta rifiuti, etc. In questa tesi viene considerato il Multi-Trip VRP, in cui ogni veicolo può eseguire un sottoinsieme di percorsi, chiamato vehicle schedule (schedula del veicolo), soggetto a vincoli di durata massima. Nonostante la sua importanza pratica, il MTVRP ha ricevuto poca attenzione in letteratura: sono stati proposti diversi metodi euristici e un solo algoritmo esatto di risoluzione, presentato da Mingozzi, Roberti e Toth. In questa tesi viene presentato un metodo euristico in grado di risolvere istanze di MTVRP in presenza di vincoli reali, quali flotta di veicoli non omogenea e time windows. L’euristico si basa sul modello di Prins. Sono presentati inoltre due approcci di local search per migliorare la soluzione finale. I risultati computazionali evidenziano l’efficienza di tali approcci.
Resumo:
Nell'elaborato si analizzano aspetti della teoria dei giochi e della multi-criteria decision-making. La riflessione serve a proporre le basi per un nuovo modello di protocollo di routing in ambito Mobile Ad-hoc Networks. Questo prototipo mira a generare una rete che riesca a gestirsi in maniera ottimale grazie ad un'acuta tecnica di clusterizzazione. Allo stesso tempo si propone come obiettivo il risparmio energetico e la partecipazione collaborativa di tutti i componenti.
Resumo:
Nell'elaborato sono analizzati diversi tipi di algoritmi di routing per reti VANET. Nel secondo capitolo verrà fornita una panoramica delle reti MANET e VANET. Nel terzo capitolo sono viste le caratteristiche delle reti VANET. Nel quarto verranno esposte le peculiarità di classificazione dei protocolli di routing routing e nel quinto capitolo saranno analizzati diversi protocolli di routing proposti fino ad ora nella letteratura.
Resumo:
This paper presents the first full-fledged branch-and-price (bap) algorithm for the capacitated arc-routing problem (CARP). Prior exact solution techniques either rely on cutting planes or the transformation of the CARP into a node-routing problem. The drawbacks are either models with inherent symmetry, dense underlying networks, or a formulation where edge flows in a potential solution do not allow the reconstruction of unique CARP tours. The proposed algorithm circumvents all these drawbacks by taking the beneficial ingredients from existing CARP methods and combining them in a new way. The first step is the solution of the one-index formulation of the CARP in order to produce strong cuts and an excellent lower bound. It is known that this bound is typically stronger than relaxations of a pure set-partitioning CARP model.rnSuch a set-partitioning master program results from a Dantzig-Wolfe decomposition. In the second phase, the master program is initialized with the strong cuts, CARP tours are iteratively generated by a pricing procedure, and branching is required to produce integer solutions. This is a cut-first bap-second algorithm and its main function is, in fact, the splitting of edge flows into unique CARP tours.
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.
Resumo:
Tesi mirata allo studio dei protocolli di routing IP utilizzati per l'inoltro dei pacchetti in una topologia non banale. Sono state utilizzate macchine Linux Raspberry Pi per il loro costo e ingombro per costruire la rete. In particolare, è stata implementata una rete caratterizzata da sette router divisi in tre aree distinte, ai quali sono state connesse sette LAN. Si è installato e utilizzato il software quagga per attivare il protocollo OSPF (Open Shortest Path First). Per limitare i dispositivi fisici si è utilizzato il software Mininet per virtualizzare switch e LAN. Infine, sono stati trattati elementi teorici del routing su Internet, applicati alla rete creata per verificarne il funzionamento.
Resumo:
L'argomento di questa tesi è l'architettura di rete Delay-/Disruption-Tolerant Networking (DTN), progettata per operare nelle reti “challenged”, dove la suite di protocolli TCP/IP risulta inefficace a causa di lunghi ritardi di propagazione del segnale, interruzioni e disturbi di canale, ecc. Esempi di reti “challenged” variano dalle reti interplanetarie alle Mobile Ad-Hoc Networks (MANETs). Le principali implementazioni dell'architettura DTN sono DTN2, implementazione di riferimento, e ION, sviluppata da NASA JPL per applicazioni spaziali. Una grande differenza tra reti spaziali e terrestri è che nello spazio i movimenti dei nodi sono deterministici, mentre non lo sono per i nodi mobili terrestri, i quali generalmente non conoscono la topologia della rete. Questo ha portato allo sviluppo di diversi algoritmi di routing: deterministici per le reti spaziali e opportunistici per quelle terrestri. NASA JPL ha recentemente deciso di estendere l'ambito di applicazione di ION per supportare anche scenari non deterministici. Durante la tesi, svolta presso NASA JPL, mi sono occupato di argomenti diversi, tutti finalizzati a questo obiettivo. Inizialmente ho testato la nuova implementazione dell'algoritmo IP Neighbor Discovery (IPND) di ION, corretti i bug e prodotta la documentazione ufficiale. Quindi ho contribuito ad integrare il Contact Graph Routing (CGR) di ION nel simulatore DTN “ONE” utilizzando la Java Native Interface (JNI) come ponte tra il codice Java di ONE e il codice C di ION. In particolare ho adattato tutte le librerie di ION necessarie per far funzionare CGR all'interno dell'ambiente di ONE. Infine, dopo aver analizzato un dataset di tracce reali di nodi mobili, ho contribuito a progettare e a sviluppare OCGR, estensione opportunistica del CGR, quindi ne ho curato l'integrazione in ONE. I risultati preliminari sembrano confermare la validità di OCGR che, una volta messo a punto, può diventare un valido concorrente ai più rinomati algoritmi opportunistici.