909 resultados para Variance Components


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foram simuladas estruturas de dados em modelos mistos representando o teste de 100 reprodutores, sendo cada reprodutor acasalado com 10 matrizes (total de 1000 matrizes), originando em cada acasalamento 2 proles, totalizando 2000 proles (vinte proles por reprodutor). De cada combinação reprodutor e matriz, dez proles tiveram seu fenótipo expresso no ambiente de baixa produção (Estrato 1) e, a outra metade, no ambiente de alta produção (Estrato 2). A simulação foi realizada de forma a representar diferentes situações de presença de heterogeneidade de variâncias, combinando-se as origens da heterogeneidade, de natureza genética e ambiental. Na presença de heterogeneidade residual, o valor estimado para o componente de variância residual, considerando homogeneidade de variâncias se aproximou do valor médio das variâncias entre os estratos. Houve superestimação, também, do componente de variância genético aditivo. Ao simular heterogeneidade de variância de origem genética, observou-se que a estimação desse componente situou-se em valor intermediário aos simulados. Nessa situação, o componente de variância residual estimado foi próximo do valor simulado, indicando que a heterogeneidade de variâncias quando proveniente de fatores genéticos, não interfere, substancialmente, sobre e estimação do componente de variância residual. Na simulação de dados com presença de heterogeneidade tanto de origem genética quanto ambiental (estrutura de dados 4), conduziu a estimação de componentes de variâncias intermediários aos valores simulados em cada estrato. Assim, observa-se que, mesmo quando os reprodutores apresentam proles bem distribuídas em ambos os estratos, a heterogeneidade de variância proveniente de fatores não genético provoca distorções sobre a estimação da variância genética aditiva. Mas por outro lado, quando a heterogeneidade de variância é decorrente de fatores genéticos, não há grande interferência sobre a estimativa da variância residual, tal comportamento pode ser explicado pela incorporação da matriz de parentesco na estimação do componente de variância genético aditivo, possibilitando discriminar melhor a origem da diferenças entre variâncias. Na estrutura onde a variância residual foi heterogênea a estimativa de herdabilidade foi menor em relação à estrutura de homogeneidade de variâncias. Por outro lado, quando somente a variância genética aditiva foi heterogênea, a estimativa de herdabilidade, considerando-se apenas o estrato de alta variabilidade genética, foi inflacionada pela superestimação da variância genética aditiva. No entanto, a estimativa de herdabilidade obtida, desconsiderando essa fonte de heterogeneidade de variância, foi próxima à situação de homogeneidade de variância, indicando que, quando os reprodutores possuem boa distribuição de proles em diferentes ambientes, as estimativas relacionadas ao efeito genético são ponderadas pelo desempenho dos animais em cada ambiente. As correlações de Spearman e de Pearson entre os valores genéticos preditos dos reprodutores, para todas as situações, foram maiores que 0,90. O resultado indica que, mesmo havendo presença de heterogeneidade de variância genética e/ou ambiental, se os reprodutores possuem proles bem distribuídas entre os ambientes (estratos heterogêneos) a classificação do mérito genético não se altera, o que era esperado, pois em análises unicarácter, quando ocorre uma fonte de viés na avaliação genética, ela é comum a todos os indivíduos. Na situação em que foi imposta a estrutura de dados à presença de heterogeneidade de variância residual com número de número desigual de proles por reprodutor nos estratos, provocou superestimação dos componentes de variância. Porém mesmo havendo alteração na magnitude dos valores genéticos preditos para os reprodutores, a heterogeneidade de variância não alterou a classificação entre os reprodutores todas as correlações de ordem foram próximas à unidade. O efeito da heterogeneidade de variância, oriunda de fatores ambientais, ocasiona em maiores distorções sobre a avaliação genética animal, em relação, quando a mesma é proveniente de causas genéticas. A conexidade genética entre diferentes ambientes, dilui o efeito da heterogeneidade de variância, tanto de origem genética, quanto ambiental, na predição de valores genéticos dos reprodutores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dados de 1.182 registros de produção de fêmeas bubalinas da raça Murrah e seus mestiços, parindo no período de 1967 a 2005, foram utilizados para estimação de parâmetros genéticos utilizando-se o método de máxima verossimilhança restrita. O modelo animal utilizado para estimação de componentes de variância incluiu os efeitos fixos de rebanho, ano e época de parto, ordem de parto e duração da lactação e os efeitos aleatórios do animal, e ambiente permanente e temporário. As estimativas de herdabilidade foram 0,25, 0,18, 0,08 e 0,09, para produção de leite, produção de gordura, duração da lactação e produção de leite por dia de intervalo de parto, respectivamente. As estimativas de repetibilidade foram 0,33, 0,29 e 0,10 para produção de leite, produção de gordura e duração da lactação, respectivamente. As correlações genéticas entre produções de leite e gordura, produção de leite com duração da lactação, produção de leite com produção de leite por dia de intervalo de partos, produção da gordura com duração da lactação, produção de gordura com produção de leite por dia de intervalo de partos e duração da lactação com produção de leite por dia de intervalo de partos foram 0,93; 0,76; 0,99; 0,89; 0,87 e -0,27, respectivamente. Os resultados demonstram que ganhos genéticos podem ser obtidos pela seleção das produções de leite e gordura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to estimate genetic parameters for milk yield at 244 days and lactation length in graded buffalo cows at the El Cangre Cattle Genetic Enterprise. Data were gathered from 2575 lactations, 1377 buffalo cows, 37 milking units and between 2002-2009 calving years. It was employed the Restricted Maximum Likelihood method (REML) for estimating (co) variance components with multi trait model. Average of milk yield at 244 days and lactation length were 864 kg and 240 days, respectively. Heritability was 0.15 for milk yield and 0.13 for lactation length. Genetic correlation between these traits was 0.63. It was concluded that it is necessary to intensify selection and to increase control of the information of the genetic herds to obtain high precision in the estimates and therefore, obtain bigger genetic progress in of this species in our country.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowing the genetic parameters of productive and reproductive traits in milking buffaloes is essential for planning and implementing of a program genetic selection. In Brazil, this information is still scarce. The objective of this study was to verify the existence of genetic variability in milk yield of buffaloes and their constituents, and reproductive traits for the possibility of application of the selection. A total of 9,318 lactations records from 3,061 cows were used to estimate heritabilities for milk yield (MY), fat percentage (%F), protein percentage (%P), length of lactation (LL), age of first calving (AFC) and calving interval (CI) and the genetic correlations among traits MY, %F and %P. The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year and calving season), number of milking (2 levels), and age of cow at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. Estimated heritability values for MY, % F, % P, LL, AFC and CI were 0.24, 0.34, 0.40, 0.09, 0.16 and 0.05, respectively. The genetic correlation estimates among MY and % F, MY and % P and % F and % P were -0.29, -0.18 and 0.25, respectively. The production of milk and its constituents showed enough genetic variation to respond to a selection program. Negative estimates of genetic correlations between milk production and its components suggest that selection entails a reduction in the other.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. Assessment of genetic parameters for accumulative productivity trait (ACP) and genetic correlations with age at first calving (AFC), between calving interval of first and second parity (BCI1) and longevity (LONG). Materials and methods. 8584 Brahman female records were used with an animal model in multi-trait analysis with restricted maximum likelihood method, implemented using the WOMBAT software. The models considered the fixed effects of contemporary group, parity and weaning weight of first calf covariate, the only random effect was the genetic additive direct. Weaning weight (P240) was included to reduce the effect of selection on the estimation of variance components. Results. The heritability estimates were 0.3 +/- 0.04, 0.11 +/- 0.03, 0.07 +/- 0.03 and 0.24 +/- 0.04 for AFC, BCI1, LONG and ACP respectively. Correlations between ACP and the other features were moderate to high and favorable. Conclusions. ACP can be included in breeding programs for Brahman, and used as selection criteria for its moderate heritability and genetic correlation with reproductive traits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)