999 resultados para Variable Spin Lock Experiment
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.
Resumo:
Spin glasses are magnetic systems with conflicting and random interactions between the individual spins. The dynamics of spin glasses, as of structural glasses, reflect their complexity. Both in experimental and numerical work the relaxation below the freezing temperature depends strongly on the annealing conditions (aging) and, above the freezing point, relaxation in equilibrium is slow and non-exponential, In this Forum, observed characteristics of the dynamics were summarized and the physical models proposed to explain them were outlined. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
Resumo:
The integrable open-boundary conditions for the model of three coupled one-dimensional XY spin chains are considered in the framework of the quantum inverse scattering method. The diagonal boundary K-matrices are found and a class of integrable boundary terms is determined. The boundary model Hamiltonian is solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
Familial partial epilepsy with variable foci (FPEVF) joins the recently recognized group of inherited partial epilepsies. We describe an Australian family with 10 individuals with partial seizures over four generations. Detailed electroclinical studies were performed on all affected and 17 clinically unaffected family members. The striking finding was that the clinical features of the seizures and interictal electroencephalographic foci differed among family members and included frontal, temporal, occipital, and centroparietal seizures. Mean age of seizure onset was 13 years (range, 0.75-43 years). Two individuals without seizures had epileptiform abnormalities on electroencephalographic studies. Penetrance of seizures was 62%. A genome-wide search failed to demonstrate definitive linkage, but a suggestion of linkage was found on chromosome 2q with a LOD score of 2.74 at recombination fraction of zero with the marker D2S133. FPEVF differs from the other inherited partial epilepsies where partial seizures in different family members are clinically similar. The inherited nature of this new syndrome may be overlooked because of relatively low penetrance and because of the variability in age at onset and electroclinical features between affected family members.
Resumo:
A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.
Resumo:
We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].