970 resultados para VE-cadherin
Resumo:
Contact interactions between different cell types play a number of important roles in development, for example in cell sorting, tissue organization, and ordered migration of cells. The nature of such heterocellular interactions, in contrast to interactions between cells of the same type, remains largely unknown. In this report, we present experimental data examining the dynamics of heterocellular interactions between epitheliocytes and fibroblasts, which express different cadherin cell adhesion molecules and possess different actin cytoskeletal organizations. Our analysis revealed two striking features of heterocellular contact. First, the active free edge of an epitheliocyte reorganizes its actin cytoskeleton after making contact with a fibroblast. Upon contact with the leading edge of a fibroblast, epitheliocytes disassemble their marginal bundle of actin filaments and reassemble actin filaments into a geometric organization more typical of a fibroblast lamella. Second, epitheliocytes and fibroblasts form cell–cell adhesion structures that have an irregular organization and are associated with components of cell adhesion complexes. The structural organization of these adhesions is more closely related to the type of contacts formed between fibroblasts rather than to those between epitheliocytes. Heterotypic epithelio-fibroblastic contacts, like homotypic contacts between fibroblasts, are transient and do not lead to formation of stable contact interactions. We suggest that heterocellular contact interactions in culture may be regarded as models of how tissue systems consisting of epithelia and mesenchyme interact and become organized in vivo.
Resumo:
Cadherins are homotypic adhesion molecules that classically mediate interactions between cells of the same type in solid tissues. In addition, E-cadherin is able to support homotypic adhesion of epidermal Langerhans cells to keratinocytes (Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. (1993) Nature (London) 361, 82-85) and heterotypic adhesion of mucosal epithelial cells to E-cadherin-negative intestinal intraepithelial T lymphocytes. Thus, we hypothesized that cadherins may play a wider role in cell-to-cell adhesion events involving T lymphocytes. We searched for a cadherin or cadherins in T lymphocytes with a pan-cadherin antiserum and antisera against alpha- or beta-catenin, molecules known to associate with the cytoplasmic domain of cadherins. The anti-beta-catenin antisera coimmunoprecipitated a radiolabeled species in T-lymphocyte lines that had a molecular mass of 129 kDa and was specifically immunoblotted with the pan-cadherin antiserum. Also, the pan-cadherin antiserum directly immunoprecipitated a 129-kDa radiolabeled species from an 125I surface-labeled Jurkat human T-cell leukemic cell line. After V8 protease digestion, the peptide map of this pan-cadherin-immunoprecipitated, 129-kDa species exactly matched that of the 129-kDa species coimmunoprecipitated with the beta-catenin antiserum. These results demonstrate that T lymphocytes express a catenin-associated protein that appears to be a member of the cadherin superfamily and may contribute to T cell-mediated immune surveillance.
Resumo:
E-Cadherin, a cell adhesion molecule, which plays a key role in maintaining the epithelial phenotype, is regarded as an invasion-suppressor gene in light of accumulating evidence from in vitro experiments and clinical observations. In an attempt to clarify the mechanism responsible for inactivation of this gene in carcinomas, we investigated the methylation state around the promoter region by digestion of DNA with the methylation-sensitive restriction enzyme Hpa II, as CpG methylation of the promoter has been postulated to be a mechanism of transcriptional inactivation of some genes. We found that E-cadherin expression-negative carcinoma cell lines were accompanied by the hypermethylation state, whereas E-cadherin-positive cell lines were not. Furthermore, treatment of E-cadherin-negative carcinoma cells with the demethylating agent 5-azacytidine resulted in reexpression of the gene and reversion of scattered spindle-shaped cells to cells with epithelial morphology. These results suggest that hypermethylation around the promoter may be a mechanism of E-cadherin inactivation in human carcinomas and that treatment of E-cadherin-inactivated cells with a demethylating agent may cause gene expression reversion leading to epithelial morphogenesis with acquisition of the homophilic cell-cell adhesive property.
Resumo:
Cell-cell adhesion in zonula adherens and desmosomal junctions is mediated by cadherins, and recent crystal structures of the first domain from murine N-cadherin provide a plausible molecular basis for this adhesive action. A structure-based sequence analysis of this adhesive domain indicates that its fold is common to all extracellular cadherin domains. The cadherin folding topology is also shown to be similar to immunoglobulin-like domains and to other Greek-key beta-sandwich structures, as diverse as domains from plant cytochromes, bacterial cellulases, and eukaryotic transcription factors. Sequence similarities between cadherins and these other molecules are very low, however, and intron patterns are also different. On balance, independent origins for a favorable folding topology seem more likely than evolutionary divergence from an ancestor common to cadherins and immunoglobulins.
Resumo:
The cadherin-catenin complex is important for mediating homotypic, calcium-dependent cell-cell interactions in diverse tissue types. Although proteins of this complex have been identified, little is known about their interactions. Using a genetic assay in yeast and an in vitro protein-binding assay, we demonstrate that beta-catenin is the linker protein between E-cadherin and alpha-catenin and that E-cadherin does not bind directly to alpha-catenin. We show that a 25-amino acid sequence in the cytoplasmic domain of E-cadherin and the amino-terminal domain of alpha-catenin are independent binding sites for beta-catenin. In addition to beta-catenin and plakoglobin, another member of the armadillo family, p120 binds to E-cadherin. However, unlike beta-catenin, p120 does not bind alpha-catenin in vitro, although a complex of p120 and endogenous alpha-catenin could be immunoprecipitated from cell extracts. In vitro protein-binding assays using recombinant E-cadherin cytoplasmic domain and alpha-catenin revealed two catenin pools in cell lysates: an approximately 1000- to approximately 2000-kDa complex bound to E-cadherin and an approximately 220-kDa pool that did not contain E-cadherin. Only beta-catenin in the approximately 220-kDa pool bound exogenous E-cadherin. Delineation of these molecular linkages and the demonstration of separate pools of catenins in different cell lines provide a foundation for examining regulatory mechanisms involved in the assembly and function of the cadherin-catenin complex.
Resumo:
Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.
Resumo:
Low-copy repeats have been associated with genomic rearrangements and have been implicated in the generation of mutations in several diseases. Here we characterize a subset of low-copy repeats in the spinal muscular atrophy (SMA) region in human chromosome 5q13. We show that this repeated sequence, named c41-cad, is a highly expressed pseudogene derived from an intact neuronal cadherin gene, Br-cadherin, situated on 5p13-14. Br-cadherin is expressed specifically in the brain, whereas the c41-cad transcripts are 10-15 times more abundant and are present in all tissues examined. We speculate that the c41-cad repeats, separately or in concert with other repeats in the SMA region, are involved in the pathogenesis of SMA by promoting rearrangements and deletions.
Resumo:
1896, pt. 2
Resumo:
t. 2
Resumo:
t. 1
Resumo:
t. 3
Resumo:
anne. 36
Resumo:
In Ottoman Turkish.
Resumo:
bū Mengdah ber sakhar kitābīnī Rūsīyadākī Muslumānlar Tūrkī talīnah taṣnīf qīldim Qāzānliq mahdum Muḥammad Fātiḥ Damlā Ḥammād Ughlī Khālidī.