256 resultados para VASCULARIZATION
Resumo:
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Resumo:
Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^
Resumo:
Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^
Resumo:
Sry and Wnt4 cDNAs were individually introduced into the ubiquitously-expressed Rosa26 ( R26) locus by gene targeting in embryonic stem (ES) cells to create a conditional gene expression system in mice. In the targeted alleles, expression of these cDNAs should be blocked by a neomycin resistance selection cassette that is flanked by loxP sites. Transgene expression should be activated after the blocking cassette is deleted by Cre recombinase. ^ To test this conditional expression system, I have bred R26-stop- Sry and R26-stop-Wnt4 heterozygotes with a MisRII-Cre mouse line that expresses Cre in the gonads of both sexes. Analysis of these two types of bigenic heterozygotes indicated that their gonads developed normally like those of wild types. However, one XX R26-Sry/R26-Sry; MisR2-Cre/+ showed epididymis-like structures resembling those of males. In contrast, only normal phenotypes were observed in XY R26-Wnt4/R26-Wnt4; MisR2-Cre /+ mice. To interpret these results, I have tested for Cre recombinase activity by Southern blot and transcription of the Sry and Wnt4 transgenes by RT-PCR. Results showed that bigenic mutants had insufficient activation of the transgenes in their gonads at E12.5 and E13.5. Therefore, the failure to observe mutant phenotypes may have resulted from low activity of MisR2-Cre recombination at the appropriate time. ^ Col2a1-Cre transgenic mice express Cre in differentiating chondrocytes. R26-Wnt4; Col2a1-Cre bigenic heterozygous mice were found to exhibit a dramatic alteration in growth presumably caused by Wnt4 overexpression during chondrogenesis. R26-Wnt4; Col2a1-Cre mice exhibited dwarfism beginning approximately 10 days after birth. In addition, they also had craniofacial abnormalities, and had delayed ossification of the lumbar vertebrate and pelvic bones. Histological analysis of the growth plates of R26-Wnt4; Col2a1-Cre mice revealed less structural organization and a delay in onset of the primary and secondary ossification centers. Molecular studies confirmed that overexpression of Wnt4 causes decreased proliferation and early maturation of chondrocytes. In addition, R26-Wnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF), suggesting that defects in vascularization may contribute to the dwarf phenotype. Finally, 9-month-old R26-Wnt4; Col2a1-Cre mice had significantly more fat cells in the marrow cavities of their metaphysis long bones, implying that long-term overexpression of Wnt4may cause bone marrow pathologies. In conclusion, Wnt4 was activated by Col2a1-Cre recombinase and was overexpressed in the growth plate, resulting in aberrant proliferation and differentiation of chondrocytes, and ultimately leads to dwarfism in mice. ^
Resumo:
The purpose of this study was to characterize the effects of IL-6 on endothelial cells and to investigate the role of IL-6 in the angiogenesis of ovarian carcinomas. We evaluated human ovarian carcinoma clinical specimens and determined that high expression of IL-6 was associated with increased tumor vascularization. Additionally, endothelial cells derived from the ovary and mesentery expressed the IL-6 receptor (IL-6R), and their stimulation with the exogenous ligand activated downstream signaling molecules and enhanced cell migration. Dual immunohistochemical staining for CD-31 and IL-6R revealed IL-6R expression on human endothelial cells within normal ovary and ovarian carcinomas. To further investigate the possible proangiogenic function of IL-6, Gelfoam sponges containing IL-6 or bFGF were implanted into the subcutis of BALB/c mice. IL-6 containing sponges were vascularized to the same extent as bFGF containing sponges. ^ Chronic stress can adversely affect disease progression. Stimulation of ovarian carcinoma cell lines with concentrations of catecholamines achieved in individuals experiencing chronic stress resulted in a substantial increase in IL-6 production. It was determined that stress mediators regulate IL-6 expression through the β-adrenergic receptor and Src. These data illustrate one mechanism by which chronic stress may influence tumor progression. ^ To investigate whether IL-6 contributes to the angiogenesis of ovarian carcinomas, we isolated low IL-6 expressing clones from the SKOV3.ip1 cell line and transfected them with a plasmid encoding the IL-6 gene. We observed no difference in tumor weight between high and low IL-6 expressing cells. However, while low IL-6 expressing tumors were highly vascularized, high IL-6 expressing tumors appeared hypervascularized. Immunohistochemical analysis revealed that all tumors exhibited robust expression of additional proangiogenic molecules. ^ Collectively, these studies indicate that IL-6 secreted by ovarian cancer cells is a highly proangiogenic cytokine. However, IL-6 is but one of several proangiogenic molecules produced by ovarian cancer, and its inhibition may not be sufficient to inhibit angiogenesis of ovarian carcinoma. The findings presented in this dissertation provide insight into the function of IL-6 as a regulator of angiogenesis. Understanding of the role of proangiogenic molecules such as IL-6 in ovarian carcinoma may have important implications for therapy directed at the vascular component of this disease. ^
Resumo:
Tumor growth often outpaces its vascularization, leading to development of a hypoxic tumor microenvironment. In response, an intracellular hypoxia survival pathway is initiated by heterodimerization of hypoxia-inducible factor (HIF)-1α and HIF-1β, which subsequently upregulates the expression of several hypoxia-inducible genes, promotes cell survival and stimulates angiogenesis in the oxygen-deprived environment. Hypoxic tumor regions are often associated with resistance to various classes of radio- or chemotherapeutic agents. Therefore, development of HIF-1α/β heterodimerization inhibitors may provide a novel approach to anti-cancer therapy. To this end, a novel approach for imaging HIF-1α/β heterodimerization in vitro and in vivo was developed in this study. Using this screening platform, we identified a promising lead candidate and further chemically derivatized the lead candidate to assess the structure-activity relationship (SAR). The most effective first generation drug inhibitors were selected and their pharmacodynamics and anti-tumor efficacy in vivo were verified by bioluminescence imaging (BLI) of HIF-1α/β heterodimerization in the xenograft tumor model. Furthermore, the first generation drug inhibitors, M-TMCP and D-TMCP, demonstrated efficacy as monotherapies, resulting in tumor growth inhibition via disruption of HIF-1 signaling-mediated tumor stromal neoangiogenesis.
Resumo:
Se realizó el análisis morfo-anatómico de Schinopsis balansae Engl. con microscopía óptica y electrónica de barrido a fin de obtener datos de las flores de esta especie, definida como polígamo-dioica. Los resultados muestran que las flores estructuralmente perfectas son funcionalmente pistiladas, si bien presentan cinco estaminodios, los mismos carecen de tejido esporógeno; mientras que en las flores estaminadas la estructura denominada pistilo vestigial no es más que la excrecencia del ápice del receptáculo, cubierta por tejido nectarífero. De este modo, lo correcto es describir S. balansae como especie dioica. El estudio de la vascularización de las flores estaminadas muestra que el proceso de reducción es completo, ya que ni siquiera persisten los haces vasculares del pistilo. El gineceo de las flores pistiladas es pseudomonómero, con un carpelo funcional, un estilo/estigma dorsal y un óvulo; además posee dos carpelos vestigiales representados por sendos estilo/estigma laterales. Ambos tipos de flores presentan un disco nectarífero intraestaminal, con nectarostomatas para la salida del néctar. El análisis de la estructura anatómica de S. balansae brinda datos que concuerdan con los encontrados en otros géneros estudiados de la subfamila Anacardioideae de la familia Anacardiaceae.
Resumo:
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.
Resumo:
The vascular endothelial growth factor (VEGF) has been shown to be a significant mediator of angiogenesis during a variety of normal and pathological processes, including tumor development. Human U87MG glioblastoma cells express the three VEGF isoforms: VEGF121, VEGF165, and VEGF189. Here, we have investigated whether these three isoforms have distinct roles in glioblastoma angiogenesis. Clones that overexpressed each isoform were derived and inoculated into mouse brains. Mice that received VEGF121- and VEGF165-overexpressing cells developed intracerebral hemorrhages after 60–90 hr. In contrast, mice implanted with VEGF189-overexpressing cells had only slightly larger tumors than those caused by parental cells and little evidence of hemorrhage at these early times after implantation, whereas, after longer periods of growth, enhanced angiogenicity and tumorigenicity were apparent. There was rapid blood vessel growth and breakdown around the tumors caused by cells overexpressing VEGF121 and VEGF165, whereas there was similar vascularization but no eruption in the vicinity of those tumors caused by cells overexpressing VEGF189, and none on the border of the tumors caused by the parental cells. Thus, by introducing VEGF-overexpressing glioblastoma cells into the brain, we have established a reproducible and predictable in vivo model of tumor-associated intracerebral hemorrhage caused by the enhanced expression of single molecular species. Such a model should be useful for uncovering the role of VEGF isoforms in the mechanisms of angiogenesis and for investigating intracerebral hemorrhage due to ischemic stroke or congenital malformations.
Resumo:
Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3), whose expression directly correlates with cancer progression and acquisition of oncogenic potential by transformed rodent cells. We presently demonstrate that forced expression of PEG-3 in tumorigenic rodent cells, and in human cancer cells, increases their oncogenic potential in nude mice as reflected by a shorter tumor latency time and the production of larger tumors with increased vascularization. Moreover, inhibiting endogenous PEG-3 expression in progressed rodent cancer cells by stable expression of an antisense expression vector extinguishes the progressed cancer phenotype. Cancer aggressiveness of PEG-3 expressing rodent cells correlates directly with increased RNA transcription, elevated mRNA levels, and augmented secretion of vascular endothelial growth factor (VEGF). Furthermore, transient ectopic expression of PEG-3 transcriptionally activates VEGF in transformed rodent and human cancer cells. Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.
Resumo:
The p38 family of mitogen-activated protein kinases (MAPKs) mediates signaling in response to environmental stresses and inflammatory cytokines, but the requirements for the p38 MAPK pathway in normal mammalian development have not been elucidated. Here, we show that targeted disruption of the p38α MAPK gene results in homozygous embryonic lethality because of severe defects in placental development. Although chorioallantoic placentation is initiated appropriately in p38α null homozygotes, placental defects are manifest at 10.5 days postcoitum as nearly complete loss of the labyrinth layer and significant reduction of the spongiotrophoblast. In particular, p38α mutant placentas display lack of vascularization of the labyrinth layer as well as increased rates of apoptosis, consistent with a defect in placental angiogenesis. Furthermore, p38α mutants display abnormal angiogenesis in the embryo proper as well as in the visceral yolk sac. Thus, our results indicate a requirement for p38α MAPK in diploid trophoblast development and placental vascularization and suggest a more general role for p38 MAPK signaling in embryonic angiogenesis.
Resumo:
CYR61 is a secreted, cysteine-rich, heparin-binding protein encoded by a growth factor-inducible immediate–early gene. Acting as an extracellular, matrix-associated signaling molecule, CYR61 promotes the adhesion of endothelial cells through interaction with the integrin αVβ3 and augments growth factor-induced DNA synthesis in the same cell type. In this study, we show that purified CYR61 stimulates directed migration of human microvascular endothelial cells in culture through an αVβ3-dependent pathway and induces neovascularization in rat corneas. Both the chemotactic and angiogenic activities of CYR61 can be blocked by specific anti-CYR61 antibodies. Whereas most human tumor-derived cell lines tested express CYR61, the gastric adenocarcinoma cell line RF-1 does not. Expression of the CYR61 cDNA under the regulation of a constitutive promoter in RF-1 cells significantly enhances the tumorigenicity of these cells as measured by growth in immunodeficient mice, resulting in tumors that are larger and more vascularized than those produced by control RF-1 cells. Taken together, these results identify CYR61 as an angiogenic inducer that can promote tumor growth and vascularization; the results also suggest potential roles for CYR61 in physiologic and pathologic neovascularization.
Resumo:
von Hippel–Lindau (VHL) disease is a pleomorphic familial tumor syndrome that is characterized by the development of highly vascularized tumors. Homozygous disruption of the VHL gene in mice results in embryonic lethality. To investigate VHL function in the adult we have generated a conditional VHL null allele (2-lox allele) and null allele (1-lox allele) by Cre-mediated recombination in embryonic stem cells. We show here that mice heterozygous for the 1-lox allele develop cavernous hemangiomas of the liver, a rare manifestation of the human disease. Histologically these tumors were associated with hepatocellular steatosis and focal proliferations of small vessels. To study the cellular origin of these lesions we inactivated VHL tissue-specifically in hepatocytes. Deletion of VHL in the liver resulted in severe steatosis, many blood-filled vascular cavities, and foci of increased vascularization within the hepatic parenchyma. These histopathological changes were similar to those seen in livers from mice heterozygous for the 1-lox allele. Hypoxia-inducible mRNAs encoding vascular endothelial growth factor, glucose transporter 1, and erythropoietin were up-regulated. We thus provide evidence that targeted inactivation of mouse VHL can model clinical features of the human disease and underline the importance of the VHL gene product in the regulation of hypoxia-responsive genes in vivo.
Resumo:
The development of drugs for the control of tumor angiogenesis requires a simple, accurate, and economical assay for tumor-induced vascularization. We have adapted the orthotopic implantation model to angiogenesis measurement by using human tumors labeled with Aequorea victoria green fluorescent protein for grafting into nude mice. The nonluminous induced capillaries are clearly visible against the very bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. The orthotopic implantation model of human cancer has been well characterized, and fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. Intravital images of orthotopically implanted human pancreatic tumors clearly show angiogenic capillaries at both primary and metastatic sites. A quantitative time course of angiogenesis was determined for an orthotopically growing human prostate tumor periodically imaged intravitally in a single nude mouse over a 19-day period. Whole-body optical imaging of tumor angiogenesis was demonstrated by injecting fluorescent Lewis lung carcinoma cells into the s.c. site of the footpad of nude mice. The footpad is relatively transparent, with comparatively few resident blood vessels, allowing quantitative imaging of tumor angiogenesis in the intact animal. Capillary density increased linearly over a 10-day period as determined by whole-body imaging. Similarly, the green fluorescent protein-expressing human breast tumor MDA-MB-435 was orthotopically transplanted to the mouse fat pad, where whole-body optical imaging showed that blood vessel density increased linearly over a 20-week period. These powerful and clinically relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological microenvironments.
Resumo:
Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F1-FO ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response. Previous studies noting the presence of F1 ATP synthase subunits on endothelial cells and certain cancer cells did not determine whether this enzyme was functional in ATP synthesis. We now demonstrate that all components of the F1 ATP synthase catalytic core are present on the endothelial cell surface, where they colocalize into discrete punctate structures. The surface-associated enzyme is active in ATP synthesis as shown by dual-label TLC and bioluminescence assays. Both ATP synthase and ATPase activities of the enzyme are inhibited by angiostatin as well as by antibodies directed against the α- and β-subunits of ATP synthase in cell-based and biochemical assays. Our data suggest that angiostatin inhibits vascularization by suppression of endothelial-surface ATP metabolism, which, in turn, may regulate vascular physiology by established mechanisms. We now have shown that antibodies directed against subunits of ATP synthase exhibit endothelial cell-inhibitory activities comparable to that of angiostatin, indicating that these antibodies function as angiostatin mimetics.