937 resultados para Underwater pipeline inspection
Resumo:
An account and review of the simple methods for determining the operational parameters of fishing gear, underwater, such a tilt of otter boards (outwards or inwards, forwards or afterwards), vertical height of net, its horizontal spread, angle of divergence at bosom, spread between wing tips, angle of inclination of danlenos, butterfly, slope of legs and sweep-line has been given. The relationship of distance between the otter boards spread and the vertical height of net has been obtained as generally linear. The possibilities of regulating the vertical height of net (dependent variate) and spread of otter boards (independent variate) for increasing the fishing efficiency has been discussed. The angle of attack of oval shaped otter boards used during the operations still remain undetermined, however, it has been explained how the best angle of attack for increasing the efficiency of gear can be obtained by regulating the ratio of depth to warp for a given net. The inadequacy of the mere indices of catch per hour of trawling in comparing the relative efficiency of trawls in gear research studies has been indicated. The importance of estimating the operational parameters and its application to commercial fisheries depending upon the distribution pattern of fish and in gear research has been discussed. The efficiency of the jelly bottle method has been compared statistically with the observations made on the trawl gear underwater with instruments.
Resumo:
A self-contained electronic solid-state instrument capable of measuring the tension between the different parts of a trawl net in operation, has been designed and developed for the measurement in the range 0 to 300 kg with an accuracy of ± 2 kg. The instrument is useful for measuring the resistance to motion of various accessories of a trawl net. It consists of an inductive type underwater tension transducer and an electronic indicating meter kept on board the vessel, both the units being connected by electric cable.
Resumo:
This report reviews some of the natural ecological processes at work within a salt marsh as they relate to a spill of natural gas condensate - a mixture of aliphatic hydrocarbons, n-hexane, benzene, toluene, and xylene. It also reviews the environmental impacts of some of the components of natural gas condensate as well as related compounds (crude oil, higher molecular weight hydrocarbons, polycyclic aromatic hydrocarons - PAHs, linear alkyl-benzenes - LABs, etc.) on salt marsh ecosystems in southern Louisiana and elsewhere in the world. The behavior and persistence of these compounds once they have entered the environment is also considered.
Resumo:
The last major pearl fishery in the Gulf of Mannar was held in February-March, 1958, when about 4.5 million oysters were collected from the south-west Cheval Paar by dredging. (Sivalingam 1961). Subsequently, two smaller fisheries, one in 1960 and another in 1961 took place. In these two fisheries one million oysters and four hundred thousand oysters respectively were collected from the Cheval paar by dredging. (De Fonselm 1953). Inspections of the Banks were carried out in 1962, 1963, 1964 and 1965. (Balasuriya 1964 and Silva 1965 and 66). Since then inspections were not possible due to one of two reasons or both the non-availability of operational dredges and a suitable vessel for this type of work.The "Pesalai" a 235-ton stern trawler was made available by the Ceylon Fisheries Corporation management for the 1970 inspection. Two new 6-foot dredges turned out by the Government Factory were also available for this work. However, the survey was limited to 3 days-the period for which the vessel had been released. It was further limited to those areas of the banks over 6 fathoms in depth because of the risk in operating a large vessel in shallower depths.
Resumo:
This paper describes the use of fibre optic sensing with Brillouin Optical Time-Domain Reflectometry (BOTDR) for near-continuous (distributed) strain monitoring of a large diameter pipeline, buried in predominantly granular material, subjected to a pipe jack tunnelling operation in London Clay. The pipeline, buried at shallow depth, comprises 4.6 m long sections connected with standard bell and spigot type joints, which connect to a continuous steel pipeline. In this paper the suitability of fibre optic sensing with BOTDR for monitoring pipeline behaviour is illustrated. The ability of the fibre optic sensor to detect local strain changes at joints and the subsequent impact on the overall strain profile is shown. The BOTDR strain profile was also used to infer pipe settlement through a process of double-integration and was compared to pipe settlement measurements. The close approximation of the measured pipe settlement provides further confidence in fibre optic strain sensing with BOTDR to investigate the intricacies of pipeline behaviour, pipe-soil interaction and interaction between pipe sections when subjected to ground movement. Copyright ASCE 2006.
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
A comparative study on the effect of A.C. field on Puntius ticto, Heteropneustis fossilis and Tilapta mossambica was carried out using a slowly rising field intensity. Well defined reactions appeared in the species of fish with slight specific variations, depending on their orientation in the electrical field, on reaching the field intensity to specific value. These reactions can be distinguished as first reaction, when the fish perceive the surrounding field, jerky swimming when parallel to the current lines (longitudinal oscillotaxis), the static position finally adopted by the fish sooner or latter depending on the potential gradient (transverse oscillotaxis), and a state of muscular rigidity (tetanus). After switching off the current, a hypnotic condition prevailed in the treated fishes before returning to their normal swimming condition. The orientation of fish body in the field had an important bearing on the behaviour reactions and current thresholds necessary for those reactions. Initial reaction, jerky swimming between electrodes and hypnosis after stoppage of current appeared in fishes earlier when the fish body was in parallel to the current lines, whereas fishes responded to transverse oscillotaxis quickly when perpendicular to current lines.
Resumo:
Response to external electric field (D. C.) of three different varieties of fish namely Puntius ticto, Heteropneustis fossilis and Tilapia mossambica having different anatomical and behavioural characteristics were studied. Clearly distinguished reactions occurred one after another m all the varieties of fish with the increase in field intensity with minor specific variations. These reactions can be broadly classified into initial start (first reaction), forced swimming (galvanotaxis), slackening of body muscle (galvanonarcosis) and state of muscular rigidity (tetanus). The orientation of the organism (projection of nervous element) to the surrounding field has been found to have important bearing on the behaviour reactions. Clearly differentiated anodic taxis and true narcosis set in when fish body axis was parallel to the lines of current conduction. But with greater angle between the body axis and the current lines, fish did not show well marked reactions. Fish body, when perpendicular to current lines responded for anodic curvature and off balance swimming followed by tetanus.