312 resultados para Typic quartzipsamment
Resumo:
An experiment was conducted to study alfalfa (Medicago sativa L.) yields as affected by row spacings of 15, 20, 30 and 40 cm and plant densities originated from 10, 15, 20 and 30 kg/ha of seeds. The experiment was conducted on a Typic Eutrortox (Clay) in Bandeirantes, state of Paraná, Brazil. The experimetal design was a 4 × 4 factorial in randomized triplicated blocks. There was no significant effect of row spacings and plant populations on plant height and dry matter production. The 15 cm row spacing showed higher number of stems throughout the two years of the experiment. Up to the 6th cut the plant density of 30 kg/ha also lead to a higher number of stems/ha.
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.
Resumo:
Currently there is very little information on the response of fruiting perennial plants to applied P. This is especially true for tropical production areas where soils have a high capacity of P fixation, and are poor in native phosphorus. An alternative to soil P fertilization, which is inefficient in fixing soils, is to apply phosphorus as a foliar spray. P is quickly absorbed by leaves, and is redistributed quite well through the plants because its phloem mobility, and foliar application may be a viable practice. The purpose of this present work, is to determine the effectiveness of foliar P application on the nutritional status and yield of guava. The experiment was done in a Typic Hapludox, for three consecutive agricultural years, in an adult orchard of 'Paluma' guava. Five treatments were tested: four rates leaf applications of P (0-0.5-1.0 and 2.0% of P2O5) and a control where P was applied to soil (200 g of P2O5/plant). Through the results it was verified that the foliar application of P altered the concentration of the nutrient in the soil (13 to 48 mg dm-3 P-resin), and in the guava leaves (1.2 to 1.8 g of P kg-1), but did not affect the production of fruits. In conclusion, in field conditions, it is viable to combine the phosphorus foliar fertilization with disease control, without increasing the operations and, consequently, the production cost.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The spatial variability of several soil attributes (bulk density, penetration resistance, water content, organic matter content and pH) as well as soybean yield have been assessed during the 2007/08 growing season, in Selviria (MS) in a Hapludox (Typic Acrustox), under no tillage. The objectives were to assess the spatial variability of soil and plant parameters at the small plot scale and to select the best soil attribute explaining most the variability of agricultural productivity. Soil and plant were sampled on a grid with 121 points within a plot of 25,600 m 2 in area and slope of 0.025 mm -1 slope. Medium and low coefficients of variation were obtained for most of the studied soil attributes as expected, due to the homogenizing effect of the no-till system on the soil physical environment. From the standpoint of linear regression and spatial pattern of variability, productivity of soybeans could be explained according to the hydrogen potential (pH). Results are discussed taken into account that the soybean crop in no-tillage is widely used in crop-livestock integration on the national scene.
Resumo:
Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.
Resumo:
The use of cover crops in the soil causes changes in soil attributes influencing in a series of hydro-physical processes, which also modify the ability of soil to support the many activities that it is intended. Thus, the objective of this study was to evaluate the effect of cover crops on physical attributes of the soil. For this, an experiment was carried out on a Typic Hapludox, Jaboticabal State, Brazil, using cover crops of millet, sunn hemp, jack bean, lab-lab and black velvet bean in no-tillage and fallow area (spontaneous vegetation). The characteristics evaluated were the bulk density, macroporosity, microporosity, total porosity, aggregate stability, penetration resistance and organic matter. The incorporation of cover crops has proved to be a beneficial practice for the physical attributes of the soil, allowing a greater aggregate stability compared to fallow in the depth of 0-0.05 m. All cover crops presented values of soil penetration resistance below the critical value of 2 MPa.
Resumo:
The fungicide can enhance response of nitrogen fertilization on wheat crop, since the application of higher N rates can provide better conditions for the development of some diseases. The present study investigated the effects of different nitrogen doses and fungicide application in preventive character on the yield of two cultivars of wheat irrigated, in Savannah conditions. The experiment was conducted in Selvíria - MS, in a Distrophic Red Latosol (Typic Haplustox). Treatments were arranged in a randomized block design, in a 4x2x2 factorial scheme: four N rates (0, 60, 120 and 180 kg ha-1), topdressing at the early boot stage as urea, two wheat cultivars (IAC 24 and IAC 370), and with and without fungicide application (Tebuconazole and Triciclazol), with four replications. The cultivars IAC 24 and IAC 370 present similar grain yield. The increase of N doses influences the mass hectoliter negatively and the leaf N content and number of ears per m2 positively. The increment of N doses increase the grain yield up to dose of 116 kg ha -1 of N, regardless of cultivar and of the fungicide application in preventive character, due to non occurrence of diseases in the experiment.
Resumo:
This work aimed to evaluate the effects of liming and phosphate fertilizer for the production of sabiá (Mimosa caesalpiniifolia Benth.) seedlings without thorns under a greenhouse. Seedlings 10 days old were transferred to plastic bags containing 2.0 kg of psamitic Dystrophic Red-Yellow Latosol (Typic Haplustox) collected from 40 to 70 cm layer. The experiment was carried out in Teresina county, Piauí state, Brazil, from July to October of 2008. Two liming doses (with and without liming) and five phosphorus doses combined in a 2 x 5 factorial scheme were used. The experimental design used was the randomized blocks with four replications having each plot three seedlings. The calculated lime amount was enough to elevate the base saturation to 50 % and the phosphorus doses were: 0, 30, 60, 90, and 120 mg kg-1 of soil. One seedling per pot was cultivated and the pot dimension was 10 by 23 cm. The evaluated variables were height, diameter, leaves number, leaf area, and shoot and roots dry matter. For the studied soil condition, the liming is not necessary to produce 'Sabiá' seedlings. The application, on average, from 72 to 107 mg kg-1 of P promote, respectively, from 90 to100 % of maximum values of height, diameter, leaf area and shoots and roots biomass.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.
Resumo:
In tropical regions, the residual effect of phosphate fertilizer source is of crucial importance. This study aimed to evaluate the effects of application of P sources in chemical properties of soil, nutrition and productivity of sugarcane plant and during the first and second ratoon. The sources of P applied in furrows at planting were, triple superphosphate, Arad phosphate, bone meal (100 kg ha-1 P2O5 total) and a control without P, the varieties of sugarcane studied were IAC86-2480 and SP79-1011. A randomized block design in a 4 × 2 factorial was used, with four replications. The study was conducted in the municipality of Alta Floresta-MT, Brazil, in Typic Hapludox. After each cutting, in soil P content, pH and Ca were evaluated. In the plant, the production of green and dry matter of shoots, the concentration of P in the biomass harvested, the export of P and agronomic efficiency of the sources of P were determined. The bone meal had a higher agronomic efficiency resulted in greater accumulation and export of P by crop, higher content of available Ca and P and increase soil pH. The Arad reactive phosphate increased its agronomic efficiency between crop cycles.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)