971 resultados para Twitching Motility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme's mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr(274) (Y274A), the proposed site for the cis,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first discovery of S100 members in 1965, their expressions have been affiliated with numerous biological functions in all cells of the body. However, in the recent years, S100A4, a member of this superfamily has emerged as the central target in generating new avenue for cancer therapy as its overexpression has been correlated with cancer patients’ mortality as well as established roles as motility and metastasis promoter. As it has no catalytic activity, S100A4 has to interact with its target proteins to regulate such effects. Up to date, more than 10 S100A4 target proteins have been identified but the mechanical process regulated by S100A4 to induce motility remains vague. In this work, we demonstrated that S100A4 overexpression resulted in actin filaments disorganisation, reduction in focal adhesions, instability of filopodia as well as exhibiting polarised morphology. However, such effects were not observed in truncated versions of S100A4 possibly highlighting the importance of C terminus of S100A4 target recognition. In order to assess some of the intracellular mechanisms that may be involved in promoting migrations, different strategies were used, including active pharmaceutical agents, inhibitors and knockdown experiments. Treatment of S100A4 overexpressing cells with blebbistatin and Y-27632, non muscle myosin IIA (NMMIIA) inhibitors, as well as knockdown of NMMIIA, resulted in motility enhancement and focal adhesions reduction proposing that NMMIIA assisted S100A4 in regulating cell motility but its presence is not essential. Further work done using Cos 7 cell lines, naturally lacking NMMIIA, further demonstrated that S100A4 is capable of regulating cell motility independent of NMMIIA, possibly through poor maturation of focal adhesion. Given that all these experiments highlighted the independency of NMMIIA towards migration, a protein that has been put at the forefront of S100A4-induced motility, we aimed to gather further understanding regarding the other molecular mechanisms that may be at play for motility. Using high throughput imaging (HCI), 3 compounds were identified to be capable of inhibiting S100A4-mediated migration. Although we have yet to investigate the underlying mechanism for their effects, these compounds have been shown to target membrane proteins and the externalisation of S100 proteins, for at least one of the compounds, leading us to speculate that preventing externalisation of S100A4 could potentially regulate cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. ^ It was initially found that comparing to wild type cells, gsk3 - cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. ^ I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein Phosphatase 2A, PP2A, is a heterotrimeric threonine/serine phosphatase system that is involved in a variety of cellular processes. This phosphatase is composed ofthree subunits: a catalytic subunit (C subunit), a scaffolding subunit (A subunit), and a regulatory subunit (B subunit). The regulatory subunit B is divided into four subclasses, B, B' (B56), B'' and B'' '. Studies showed that PP2A/B56 complexes regulate development of Dictyostelium and other metazoan cells. In addition to development, our experimental data suggest that PP2A/B56 complex also plays an important role in Dictyostelium cell motility. Cells lacking B56 was generated previously in our laboratory (Lee et al., 2008). Further studies showed that b56- cells are compromised in random cell motility compared to the wild type (AX3) cells. In contrast, b56 cells with re-introduced B56 displayed wild-type like motilities. Furthermore, one of the colleagues in our laboratory found that one of the Dictyostelium Ras species, RasG, associates with PP2A/B56 complex and RasG activation is compromised in b56- cells. Considering that Ras proteins are central in cellular motility regulation, PP2A/B56 complex may modulate cell motility through regulating Ras. We propose to determine if an introduction of constitutive active RasG proteins improves compromised b56- cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The second messenger c-di-GMP is implicated in regulation of various aspects of the lifestyles and virulence of Gram-negative bacteria. Cyclic di-GMP is formed by diguanylate cyclases with a GGDEF domain and degraded by phosphodiesterases with either an EAL or HD-GYP domain. Proteins with tandem GGDEF-EAL domains occur in many bacteria, where they may be involved in c-di-GMP turnover or act as enzymatically-inactive c-di-GMP effectors. Here, we report a systematic study of the regulatory action of the eleven GGDEF-EAL proteins in Xanthomonas oryzae pv. oryzicola, an important rice pathogen causing bacterial leaf streak. Mutational analysis revealed that XOC_2335 and XOC_2393 positively regulate bacterial swimming motility, while XOC_2102, XOC_2393 and XOC_4190 negatively control sliding motility. The ΔXOC_2335/XOC_2393 mutant that had a higher intracellular c-di-GMP level than the wild type and the ΔXOC_4190 mutant exhibited reduced virulence to rice after pressure inoculation. In vitro purified XOC_4190 and XOC_2102 have little or no diguanylate cyclase or phosphodiesterase activity, which is consistent with unaltered c-di-GMP concentration in ΔXOC_4190. Nevertheless, both proteins can bind to c-di-GMP with high affinity, indicating a potential role as c-di-GMP effectors. Overall our findings advance understanding of c-di-GMP signaling and its links to virulence in an important rice pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Pacific oyster, spermatozoa are characterized by a remarkably long movement phase (i.e., over 24 h) sustained by a capacity to maintain intracellular ATP level. To gain information on oxidative phosphorylation (OXPHOS) functionality during the motility phase of Pacific oyster spermatozoa, we studied 1) changes in spermatozoal mitochondrial activity, that is, mitochondrial membrane potential (MMP), and intracellular ATP content in relation to motion parameters and 2) the involvement of OXPHOS for spermatozoal movement using carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The percentage of motile spermatozoa decreased over a 24 h movement period. MMP increased steadily during the first 9 h of the movement phase and was subsequently maintained at a constant level. Conversely, spermatozoal ATP content decreased steadily during the first 9 h postactivation and was maintained at this level during the following hours of the movement phase. When OXPHOS was decoupled by CCCP, the movement of spermatozoa was maintained 2 h and totally stopped after 4 h of incubation, whereas spermatozoa were still motile in the control after 4 h. Our results suggest that the ATP sustaining flagellar movement of spermatozoa may partially originate from glycolysis or from mobilization of stored ATP or from potential phosphagens during the first 2 h of movement as deduced by the decoupling by CCCP of OXPHOS. However, OXPHOS is required to sustain the long motility phase of Pacific oyster spermatozoa. In addition, spermatozoa may hydrolyze intracellular ATP content during the early part of the movement phase, stimulating mitochondrial activity. This stimulation seems to be involved in sustaining a high ATP level until the end of the motility phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most eukaryotic cell motility relies on plasma membrane protrusions, which depend on the actin cytoskeleton and its tight regulation. The SCAR/WAVE complex, a pentameric assembly comprising SCAR/WAVE, Nap1, CYFIP/Pir121, Abi and HSPC300, is a key driver of actin-based protrusions such as pseudopods. SCAR/WAVE is thought to activate the Arp2/3 complex, a crucial actin nucleator, after being itself activated by upstream signals such as active Rac1. Despite recent progress on the study of the SCAR/WAVE complex, its regulation is still incompletely understood, with Nap1’s role being particularly enigmatic. Upon screening for potential Nap1 binding partners in the social amoeba Dictyostelium discoideum – a well established model organism in the study of the actin cytoskeleton and cell motility – we found FAM49, a ~36 kDa protein of unknown function which is highly conserved in Metazoa (animals) and evolutionarily closer species such as D. discoideum. Interestingly, D. discoideum’s FAM49 and its homologs contain a DUF1394 domain, which is also predicted in CYFIP/Pir121 proteins and most likely involved in their direct binding to active Rac1, which in turn contributes to SCAR/WAVE’s activation. FAM49’s unknown role, apparent high degree of conservation and potential connections to SCAR/WAVE and Rac1 persuaded us to start investigating its function and biological relevance in D. discoideum, leading to the work presented in this thesis. Several pieces of our data collectively support a function for FAM49 in modulating the protrusive behaviour, and ultimately motility, of D. discoideum cells, as well as a regulatory link between FAM49 and Rac1. FAM49’s involvement in protrusion regulation was first hinted at by our observation that GFP-tagged FAM49 is enriched in pseudopods. The possibility of a link with Rac1 was then strengthened by two additional observations: first, pseudopodial GFP-FAM49 is substantially co-enriched with active Rac, both showing fairly comparable spatio-temporal accumulation dynamics; second, when dominant-active (G12V) Rac1 is expressed in cells, it triggers the recruitment and persistent accumulation of GFP-FAM49 at the plasma membrane, where both become highly co-enriched. We subsequently determined that fam49 KO cells differ from wild-type cells in the way they protrude and move, as assessed in under-agarose chemotaxis assays. In particular, our data indicate that fam49 KO cells tend to display a lower degree of global protrusive activity, their protrusions extend more slowly and are less discrete, and the cells end up moving at lower speeds and with higher directional persistence. This phenotype was substantially rescued by FAM49 re-expression. While re-expressing FAM49 in fam49 KO cells we generated putative FAM49 overexpressor cells; compared to wild-type cells, they displayed atypically thin pseudopods and what seemed to be an excessively dynamic, and perhaps less coordinated, protrusive behaviour. Additional data in our study suggest that pseudopods made by fam49 KO cells are still driven by SCAR/WAVE, which is clearly not being replaced by WASP (as is now known to be the case in D. discoideum cells lacking a functional SCAR/WAVE complex). Nonetheless, the peculiar dynamics of those pseudopods imply that SCAR/WAVE’s activity is regulated differently when FAM49 is lost, though it remains to be determined how. This thesis is the first report of a dedicated study on FAM49 and lays the foundation for future research on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. It was initially found that comparing to wild type cells, gsk3- cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sexually transmitted chlamydial infection initially establishes in the endocervix in females, but if the infection ascends the genital tract, significant disease, including infertility, can result. Many of the mechanisms associated with chlamydial infection kinetics and disease ascension are unknown. We attempt to elucidate some of these processes by developing a novel mathematical model, using a cellular automata–partial differential equation model. We matched our model outputs to experimental data of chlamydial infection of the guinea-pig cervix and carried out sensitivity analyses to determine the relative influence of model parameters. We found that the rate of recruitment and action of innate immune cells to clear extracellular chlamydial particles and the rate of passive movement of chlamydial particles are the dominant factors in determining the early course of infection, magnitude of the peak chlamydial time course and the time of the peak. The rate of passive movement was found to be the most important factor in determining whether infection would ascend to the upper genital tract. This study highlights the importance of early innate immunity in the control of chlamydial infection and the significance of motility-diffusive properties and the adaptive immune response in the magnitude of infection and in its ascension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin is a multi-functional peptide hormone which affects various processes including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is controversial. However, it has direct effects on cancer cell proliferation. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organisation of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their role in obesity, diabetes and cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avatars perform a complex range of inter-related functions. They not only allow us to express a digital identity, they facilitate the expression of physical motility and, through non-verbal expression, help to mediate social interaction in networked environments. When well designed, they can contribute to a sense of “presence” (a sense of being there) and a sense of “co-presence” (a sense of being there with others) in digital space. Because of this complexity, the study of avatars can be enriched by theoretical insights from a range of disciplines. This paper considers avatars from the perspectives of critical theory, visual communication, and art theory (on portraiture) to help elucidate the role of avatars as an expression of identity. It goes on to argue that identification with an avatar is also produced through their expression of motility and discusses the benefits of film theory for explaining this process. Conceding the limits of this approach, the paper draws on philosophies of body image, Human Computer Interaction (HCI) theory on embodied interaction, and fields as diverse as dance to explain the sense of identification, immersion, presence and co-presence that avatars can produce.