884 resultados para Turboalbero MatLab Simulink modello dinamico mappe prestazionali turbina Allison
Resumo:
In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.
Resumo:
Um den Fahrkomfort eines Automobils weiter zu erhöhen und zugleich dessen fahrdynamischen Grenzbereich kontinuierlich auszubauen, wurden im Laufe der letzten Jahrzehnte und insbesondere innerhalb der letzten Jahre vermehrt aktive Fahrwerkregelsysteme eingeführt. Durch diesen zunehmenden Verbau von Fahrwerksaktoren in heutigen Fahrzeugen nimmt jedoch die Beanspruchung des 12V-Energienetzes nach wie vor stetig zu und beeinträchtigt somit dessen Stabilität. Um das Bordnetz zu stützen, stehen nun einige Optionen zur Verfügung, wie z.B. der Einsatz einer zusätzlichen 48V-Spannungsebene. Da solche Technologien jedoch mit einem entsprechend hohen Mehraufwand einhergehen, ist es das Bestreben der Automobilindustrie, mit der Einführung derartiger Maßnahmen möglichst lange zu warten. Um diesen Zielkonflikt zu lösen, wird im Rahmen dieser Dissertation das Potential eines Zentralreglers für ein aktives Fahrwerk untersucht, welches unter Beachtung der Bordnetzstabilität und der geforderten fahrdynamischen Eigenschaften realisierbar ist. Zu diesem Zweck wird ein Versuchsträger aufgebaut und mit ausgewählten aktiven Fahrwerkskomponenten ausgestattet. Auf Basis dieses Versuchsfahrzeugs wird ein Gesamtfahrzeugmodell in der Simulationsumgebung Matlab/Simulink bzw. veDYNA generiert, welches in der Lage ist, die elektromechanischen Charakteristiken des aktiven Fahrwerks realitätsnah abzubilden. Da die Simulationsmodelle der Fahrwerkssteller Hinterachslenkung und Sportdifferenzial bislang nicht verfügbar waren, mussten zunächst entsprechende Modelle aufgebaut werden, welche die Auswirkungen der Aktoren sowohl auf die Fahrdynamik als auch auf den Strombedarf in geeigneter Form wiedergeben können. Das zentrale Regelungskonzept für das aktive Fahrwerk, welches im Rahmen dieser Arbeit zum Einsatz kommt, basiert auf einer linear-quadratischen Regelung (LQR) mit Führungsgrößenaufschaltung. Unter Zuhilfenahme der Simulationsumgebung und eines speziell entwickelten Optimierungstools werden unterschiedliche Reglerabstimmungen vorgestellt, bei denen zum einen die Absenkung des elektrischen Leistungsbedarfs und zum anderen die Umsetzung einer optimalen Fahrdynamik im Vordergrund steht. Zwecks Validierung der Berechnungsergebnisse werden anschließend die im Versuchsträger durchgeführten Untersuchungen präsentiert, bei denen diese Reglerabstimmungen gegenübergestellt werden, um das Potential des zentralen Regelungskonzeptes zu bewerten.
Resumo:
Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB (R)/SINIULINK (R) models to structural VHDL-AMS descriptions. The tool developed, named (MSSV)-S-2, reads a SIMULINK (R) model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the SystemVision (TM). To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB (R)/SIMULINK (R). The VHDL-AMS code generated automatically by (MSSV)-S-2, (MATLAB (R)/SIMULINK (R) to SystemVision (TM)), was then simulated in the SystemVision (TM). The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.
Resumo:
Simulazione dinamica del comportamento dinamico di un parastrappi motociclistico (materiale elastomerico). Partendo da dati sperimentali ed attraverso Simulink, si è creato un modello che fosse il più semplice ed il più generico possibile, in modo che, grazie ad ottimizzazioni dedicate, potesse essere applicato a diversi casi. Lo scopo del modello, inoltre, è quello di essere inserito all'interno di uno più complesso che descrive il comportamento dinamico complessivo della moto.
Sviluppo di metodologie per la generazione automatica di calibrazioni di guidabilità motore e cambio
Resumo:
Il presente progetto ha riguardato lo studio e lo sviluppo di metodologie per la generazione automatica di calibrazioni di guidabilità motore cambio, dove con guidabilità si intende il legame intercorrente tra le richieste del conducente ed il reale comportamento del veicolo. La prima parte della tesi si è concentrata sullo studio delle calibrazioni motore e delle calibrazioni del cambio automatico attualmente sfruttate dai software di produzione, sviluppando un modello di simulazione in grado di verificare come queste calibrazioni influenzino il comportamento del veicolo, concentrandosi sugli andamenti delle accelerazioni e dei regimi motore risultanti. Dopo la validazione del modello, è stato creato uno strumento, in ambiente Matlab, che restituisce la calibrazione di guidabilità del cambio automatico, ovvero la mappa sfruttata dalla relativa centralina per gestire il cambio della marcia, ricevendo in ingresso le seguenti informazioni: le grandezze fisiche del veicolo nel suo complesso, quali la massa, i rapporti di trasmissione, il rapporto del differenziale, il raggio di rotolamento dinamico e tutte le inerzie dei componenti della driveline; le calibrazioni di guidabilità motore, costituite da otto mappe, una per ogni marcia, che definiscono la coppia motrice che si richiede al motore di erogare, in funzione della posizione del pedale acceleratore e del regime motore; il piano quotato del motore. Il codice, note queste informazioni, genera automaticamente la mappa di cambio marcia con le linee di Upshift (marcia innestata crescente) e Downshift (marcia innestata decrescente), in funzione della posizione del pedale e dei giri in uscita dal cambio. Infine, si è valutata una possibile strategia per la calibrazione delle otto mappe pedale con cui viene gestito il controllo motore. Si sono generate mappe a potenza costante in cui il pedale assume la funzione di regolatore di velocità.
Resumo:
The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.
Resumo:
Gordon E. Moore, co-fundador de Intel, predijo en una publicación del año 1965 que aproximadamente cada dos años se duplicaría el número de transistores presentes en un circuito integrado, debido a las cada vez mejores tecnologías presentes en el proceso de elaboración. A esta ley se la conoce como Ley de Moore y su cumplimiento se ha podido constatar hasta hoy en día. Gracias a ello, con el paso del tiempo cada vez se presentan en el mercado circuitos integrados más potentes, con mayores prestaciones para realizar tareas cada vez más complejas. Un tipo de circuitos integrados que han podido evolucionar de forma importante por dicho motivo, son los dispositivos de lógica programable, circuitos integrados que permiten implementar sobre ellos las funciones lógicas que desee implementar el usuario. Hasta hace no muchos años, dichos dispositivos eran capaces de implementar circuitos compuestos por unas pocas funciones lógicas, pero gracias al proceso de miniaturización predicho por la Ley de Moore, hoy en día son capaces de implementar circuitos tan complejos como puede ser un microprocesador; dichos dispositivos reciben el nombre de FPGA, siglas de Field Programmable Gate Array. Debido a la mayor capacidad y por lo tanto a diseños más complejos implementados sobre las FPGA, en los últimos años han aparecido herramientas cuyo objetivo es hacer más fácil el proceso de ingeniería dentro de un desarrollo en este tipo de dispositivos, como es la herramienta HDL Coder de la compañía MathWorks, creadores también Matlab y Simulink, unas potentes herramientas usadas ampliamente en diferentes ramas de la ingeniería. El presente proyecto tiene como objetivo evaluar el uso de dicha herramienta para el procesado digital de señales, usando para ello una FPGA Cyclone II de la casa Altera. Para ello, se empezará analizando la herramienta escogida comparándola con herramientas de la misma índole, para a continuación seleccionar una aplicación de procesado digital de señal a implementar. Tras diseñar e implementar la aplicación escogida, se deberá simular en PC para finalmente integrarla en la placa de evaluación seleccionada y comprobar su correcto funcionamiento. Tras analizar los resultados de la aplicación de implementada, concretamente un analizador de la frecuencia fundamental de una señal de audio, se ha comprobado que la herramienta HDL Coder, es adecuada para este tipo de desarrollos, facilitando enormemente los procesos tanto de implementación como de validación gracias al mayor nivel de abstracción que aporta.
Resumo:
The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented
Resumo:
La presente tesi riguarda lo studio di procedimenti di ottimizzazione di sistemi smorzati. In particolare, i sistemi studiati sono strutture shear-type soggette ad azioni di tipo sismico impresse alla base. Per effettuare l’ottimizzazione dei sistemi in oggetto si agisce sulle rigidezze di piano e sui coefficienti di smorzamento effettuando una ridistribuzione delle quantità suddette nei piani della struttura. È interessante effettuare l’ottimizzazione di sistemi smorzati nell’ottica della progettazione antisismica, in modo da ridurre la deformata della struttura e, conseguentemente, anche le sollecitazioni che agiscono su di essa. Il lavoro consta di sei capitoli nei quali vengono affrontate tre procedure numerico-analitiche per effettuare l’ottimizzazione di sistemi shear-type. Nel primo capitolo si studia l’ottimizzazione di sistemi shear-type agendo su funzioni di trasferimento opportunamente vincolate. In particolare, le variabili di progetto sono le rigidezze di piano, mentre i coefficienti di smorzamento e le masse di piano risultano quantità note e costanti durante tutto il procedimento di calcolo iterativo; per effettuare il controllo dinamico della struttura si cerca di ottenere una deformata pressoché rettilinea. Tale condizione viene raggiunta ponendo le ampiezze delle funzioni di trasferimento degli spostamenti di interpiano pari all’ampiezza della funzione di trasferimento del primo piano. Al termine della procedura si ottiene una ridistribuzione della rigidezza complessiva nei vari piani della struttura. In particolare, si evince un aumento della rigidezza nei piani più bassi che risultano essere quelli più sollecitati da una azione impressa alla base e, conseguentemente, si assiste ad una progressiva riduzione della variabile di progetto nei piani più alti. L’applicazione numerica di tale procedura viene effettuata nel secondo capitolo mediante l’ausilio di un programma di calcolo in linguaggio Matlab. In particolare, si effettua lo studio di sistemi a tre e a cinque gradi di libertà. La seconda procedura numerico-analitica viene presentata nel terzo capitolo. Essa riguarda l’ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento e consta di due fasi. La prima fase ricerca il progetto ottimale della struttura per uno specifico valore della rigidezza complessiva e dello smorzamento totale, mentre la seconda fase esamina una serie di progetti ottimali in funzione di diversi valori della rigidezza e dello smorzamento totale. Nella prima fase, per ottenere il controllo dinamico della struttura, viene minimizzata la somma degli scarti quadratici medi degli spostamenti di interpiano. Le variabili di progetto, aggiornate dopo ogni iterazione, sono le rigidezze di piano ed i coefficienti di smorzamento. Si pone, inoltre, un vincolo sulla quantità totale di rigidezza e di smorzamento, e i valori delle rigidezze e dei coefficienti di smorzamento di ogni piano non devono superare un limite superiore posto all’inizio della procedura. Anche in questo caso viene effettuata una ridistribuzione delle rigidezze e dei coefficienti di smorzamento nei vari piani della struttura fino ad ottenere la minimizzazione della funzione obiettivo. La prima fase riduce la deformata della struttura minimizzando la somma degli scarti quadrarici medi degli spostamenti di interpiano, ma comporta un aumento dello scarto quadratico medio dell’accelerazione assoluta dell’ultimo piano. Per mantenere quest’ultima quantità entro limiti accettabili, si passa alla seconda fase in cui si effettua una riduzione dell’accelerazione attraverso l’aumento della quantità totale di smorzamento. La procedura di ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento viene applicata numericamente, mediante l’utilizzo di un programma di calcolo in linguaggio Matlab, nel capitolo quattro. La procedura viene applicata a sistemi a due e a cinque gradi di libertà. L’ultima parte della tesi ha come oggetto la generalizzazione della procedura che viene applicata per un sistema dotato di isolatori alla base. Tale parte della tesi è riportata nel quinto capitolo. Per isolamento sismico di un edificio (sistema di controllo passivo) si intende l’inserimento tra la struttura e le sue fondazioni di opportuni dispositivi molto flessibili orizzontalmente, anche se rigidi in direzione verticale. Tali dispositivi consentono di ridurre la trasmissione del moto del suolo alla struttura in elevazione disaccoppiando il moto della sovrastruttura da quello del terreno. L’inserimento degli isolatori consente di ottenere un aumento del periodo proprio di vibrare della struttura per allontanarlo dalla zona dello spettro di risposta con maggiori accelerazioni. La principale peculiarità dell’isolamento alla base è la possibilità di eliminare completamente, o quantomeno ridurre sensibilmente, i danni a tutte le parti strutturali e non strutturali degli edifici. Quest’ultimo aspetto è importantissimo per gli edifici che devono rimanere operativi dopo un violento terremoto, quali ospedali e i centri operativi per la gestione delle emergenze. Nelle strutture isolate si osserva una sostanziale riduzione degli spostamenti di interpiano e delle accelerazioni relative. La procedura di ottimizzazione viene modificata considerando l’introduzione di isolatori alla base di tipo LRB. Essi sono costituiti da strati in elastomero (aventi la funzione di dissipare, disaccoppiare il moto e mantenere spostamenti accettabili) alternati a lamine in acciaio (aventi la funzione di mantenere una buona resistenza allo schiacciamento) che ne rendono trascurabile la deformabilità in direzione verticale. Gli strati in elastomero manifestano una bassa rigidezza nei confronti degli spostamenti orizzontali. La procedura di ottimizzazione viene applicata ad un telaio shear-type ad N gradi di libertà con smorzatori viscosi aggiunti. Con l’introduzione dell’isolatore alla base si passa da un sistema ad N gradi di libertà ad un sistema a N+1 gradi di libertà, in quanto l’isolatore viene modellato alla stregua di un piano della struttura considerando una rigidezza e uno smorzamento equivalente dell’isolatore. Nel caso di sistema sheat-type isolato alla base, poiché l’isolatore agisce sia sugli spostamenti di interpiano, sia sulle accelerazioni trasmesse alla struttura, si considera una nuova funzione obiettivo che minimizza la somma incrementata degli scarti quadratici medi degli spostamenti di interpiano e delle accelerazioni. Le quantità di progetto sono i coefficienti di smorzamento e le rigidezze di piano della sovrastruttura. Al termine della procedura si otterrà una nuova ridistribuzione delle variabili di progetto nei piani della struttura. In tal caso, però, la sovrastruttura risulterà molto meno sollecitata in quanto tutte le deformazioni vengono assorbite dal sistema di isolamento. Infine, viene effettuato un controllo sull’entità dello spostamento alla base dell’isolatore perché potrebbe raggiungere valori troppo elevati. Infatti, la normativa indica come valore limite dello spostamento alla base 25cm; valori più elevati dello spostamento creano dei problemi soprattutto per la realizzazione di adeguati giunti sismici. La procedura di ottimizzazione di sistemi isolati alla base viene applicata numericamente mediante l’utilizzo di un programma di calcolo in linguaggio Matlab nel sesto capitolo. La procedura viene applicata a sistemi a tre e a cinque gradi di libertà. Inoltre si effettua il controllo degli spostamenti alla base sollecitando la struttura con il sisma di El Centro e il sisma di Northridge. I risultati hanno mostrato che la procedura di calcolo è efficace e inoltre gli spostamenti alla base sono contenuti entro il limite posto dalla normativa. Giova rilevare che il sistema di isolamento riduce sensibilmente le grandezze che interessano la sovrastruttura, la quale si comporta come un corpo rigido al di sopra dell’isolatore. In futuro si potrà studiare il comportamento di strutture isolate considerando diverse tipologie di isolatori alla base e non solo dispositivi elastomerici. Si potrà, inoltre, modellare l’isolatore alla base con un modello isteretico bilineare ed effettuare un confronto con i risultati già ottenuti per il modello lineare.
Resumo:
Lo scopo di questa tesi di dottorato è la comparazione di metodi per redarre mappe della vulnerabilità degli acquiferi all’inquinamento. Sono state redatte le mappe di vulnerabilità dell’acquifero della conoide del Reno utilizzando i metodi parametrici SINTACS (Civita e De Maio, 1997) e DRASTIC (Aller et al., 1987). E' stato elaborato un modello tridimensionale del flusso tramite l'utilizzo del software di modellistica numerica FEFLOW. I risultati ottenuti sono stati confrontati con le mappe derivanti dall'appllicazione dei PCSM. E’ stato, inoltre, approfondito lo sviluppo di un modello inverso, che, partendo dalla distruzione del carico piezometrico, fornisce la distribuzione della conducibilità idraulica dell’acquifero.La conoscenza di questo parametro è, infatti, il punto di partenza per lo sviluppo di un nuovo metodo per la definizione della vulnerabilità basato sulla caratterizzazione dell'area di acquifero potenzialmente inquinabile rispetto ad uno sversamento in superficie di un inquinante.L’indice di vulnerabilità viene definito sulla lunghezza del cammino che un inquinante percorrere nell’arco di un anno.
Resumo:
Questa tesi affronta lo studio di una tipologia di vibrazione autoeccitata, nota come chatter, che si manifesta nei processi di lavorazione ad asportazione di truciolo ed in particolare nelle lavorazioni di fresatura. La tesi discute inoltre lo sviluppo di una tecnica di monitoraggio e diagnostica del chatter basato sul rilievo di vibrazioni. Il fenomeno del chatter è caratterizzato da violente oscillazioni tra utensile e pezzo in lavorazione ed elevate emissioni acustiche. Il chatter, se non controllato, causa uno scadimento qualitativo della finitura superficiale e delle tolleranze dimensionali del lavorato, una riduzione della vita degli utensili e dei componenti della macchina. Questa vibrazione affligge negativamente la produttività e la qualità del processo di lavorazione e pregiudica l’interazione uomo-macchina-ambiente. Per una data combinazione di macchina, utensile e pezzo lavorato, i fattori che controllano la velocità di asportazione del materiale sono gli stessi che controllano l’insorgenza del chatter: la velocità di rotazione del mandrino, la profondità assiale di passata e la velocità di avanzamento dell’utensile. Per studiare il fenomeno di chatter, con l’obbiettivo di individuare possibili soluzioni per limitarne o controllarne l’insorgenza, vengono proposti in questa tesi alcuni modelli del processo di fresatura. Tali modelli comprendono il modello viscoelastico della macchina fresatrice e il modello delle azioni di taglio. Per le azioni di taglio è stato utilizzato un modello presente in letteratura, mentre per la macchina fresatrice sono stati utilizzato modelli a parametri concentrati e modelli modali analitico-sperimentali. Questi ultimi sono stati ottenuti accoppiando un modello modale sperimentale del telaio, completo di mandrino, della macchina fresatrice con un modello analitico, basato sulla teoria delle travi, dell’utensile. Le equazioni del moto, associate al processo di fresatura, risultano essere equazioni differenziali con ritardo a coefficienti periodici o PDDE (Periodic Delay Diefferential Equations). È stata implementata una procedura numerica per mappare, nello spazio dei parametri di taglio, la stabilità e le caratteristiche spettrali (frequenze caratteristiche della vibrazione di chatter) delle equazioni del moto associate ai modelli del processo di fresatura proposti. Per testare i modelli e le procedure numeriche proposte, una macchina fresatrice CNC 4 assi, di proprietà del Dipartimento di Ingegneria delle Costruzioni Meccaniche Nucleari e Metallurgiche (DIEM) dell’Università di Bologna, è stata strumentata con accelerometri, con una tavola dinamometrica per la misura delle forze di taglio e con un adeguato sistema di acquisizione. Eseguendo varie prove di lavorazione sono stati identificati i coefficienti di pressione di taglio contenuti nel modello delle forze di taglio. Sono stati condotti, a macchina ferma, rilievi di FRFs (Funzioni Risposta in Frequenza) per identificare, tramite tecniche di analisi modale sperimentale, i modelli del solo telaio e della macchina fresatrice completa di utensile. I segnali acquisiti durante le numerose prove di lavorazione eseguite, al variare dei parametri di taglio, sono stati analizzati per valutare la stabilità di ciascun punto di lavoro e le caratteristiche spettrali della vibrazione associata. Questi risultati sono stati confrontati con quelli ottenuti applicando la procedura numerica proposta ai diversi modelli di macchina fresatrice implementati. Sono state individuate le criticità della procedura di modellazione delle macchine fresatrici a parametri concentrati, proposta in letteratura, che portano a previsioni erronee sulla stabilità delle lavorazioni. È stato mostrato come tali criticità vengano solo in parte superate con l’utilizzo dei modelli modali analitico-sperimentali proposti. Sulla base dei risultati ottenuti, è stato proposto un sistema automatico, basato su misure accelerometriche, per diagnosticare, in tempo reale, l’insorgenza del chatter durante una lavorazione. È stato realizzato un prototipo di tale sistema di diagnostica il cui funzionamento è stato provato mediante prove di lavorazione eseguite su due diverse macchine fresatrici CNC.
Resumo:
INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.