959 resultados para Triple Bottom Line
Resumo:
Objectives: We studied the neuroimaging and neurophysiological aspects of 17 patients with midline facial defects with ocular hypertelorism (MFDH). Methods: The investigation protocol included a previous semistructured questionnaire about family history; gestational, neonatal, and postnatal development; and dysmorphologic and neurologic evaluation. Recognized monogenic disorders and individuals with other well-known conditions were excluded. All patients had high resolution magnetic resonance imaging (MRI) with multiplanar reconstruction (MPR) and routine electroencephalograms (EEGs). Results: We detected abnormalities in five patients whose MRIs had been previously reported as normal. MRI showed central nervous system (CNS) structural abnormalities in all patients, which included commissural alterations in 16/17 (94%), malformations of cortical development in 10/17 (58%), disturbances of neural tube closure in 7/17(42%), and posterior fossa anomalies in 6/17 (35%). Some patients had more than one type of malformation occurring at different stages of the embryonary process. EEGs showed epileptiform activity in 4/17 (24%) and background abnormalities in 5/17 (29%) of patients. Conclusion: This study clearly demonstrated the presence of structural and functional neurologic alterations related to MFDH. Therefore, the CNS anomalies cannot be considered incidental findings but an intrinsic part of this condition, which could be related to environmental effects and/or genetic mutations. These findings would provide a basis for future investigations on MFDH and should also be considered when planning rehabilitation.
Resumo:
Purpose To assess the cost effectiveness of fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) in patients with Hodgkin`s lymphoma (HL) with unconfirmed complete remission (CRu) or partial remission (PR) after first-line treatment. Patients and Methods One hundred thirty patients with HL were prospectively studied. After treatment, all patients with CRu/PR were evaluated with FDG-PET. In addition, PET-negative patients were evaluated with standard follow-up, and PET-positive patients were evaluated with biopsies of the positive lesions. Local unit costs of procedures and tests were evaluated. Cost effectiveness was determined by evaluating projected annual economic impact of strategies without and with FDG-PET on HL management. Results After treatment, CRu/PR was observed in 50 (40.0%) of the 127 patients; the sensitivity, specificity, and positive and negative predictive values of FDG-PET were 100%, 92.0%, 92.3%, and 100%, respectively (accuracy of 95.9%). Local restaging costs without PET were $350,050 compared with $283,262 with PET, a 19% decrease. The incremental cost-effectiveness ratio is -$3,268 to detect one true case. PET costs represented 1% of total costs of HL treatment. Simulated costs in the 974 patients registered in the 2008 Brazilian public health care database showed that the strategy including restaging PET would have a total program cost of $56,498,314, which is $516,942 less than without restaging PET, resulting in a 1% cost saving. Conclusion FDG-PET demonstrated 95.9% accuracy in restaging for patients with HL with CRu/PR after first-line therapy. Given the observed probabilities, FDG-PET is highly cost effective and would reduce costs for the public health care program in Brazil.
Resumo:
Experience with advanced techniques has increased the indications for laparoscopic liver resection. This video demonstrates technical aspects of a pure laparoscopic mesohepatectomy using intrahepatic Glissonian technique. To the best of our knowledge, this is the first case of anatomic laparoscopic mesohepatectomy using the Glissonian approach published in the English literature. A 62-year-old man with colorectal liver metastasis occupying central liver segments was referred for surgical treatment. The first step is the control of segment 4 pedicle. Using the round ligament as a guide, one incision is performed on its right margin and another is made at the bottom of segment 4. A vascular clamp is introduced through those incisions to occlude segment 4 Glissonian sheath. The next step is to control the right anterior pedicle. The first incision is made in front of the hilum and another is performed on the right edge of gallbladder bed. Laparoscopic clamp is introduced through these incisions and closed producing ischemic discoloration of segments 5 and 8. Vascular clamp is replaced by an endoscopic vascular stapling device and stapler is fired. Line of liver transection is marked along the liver surface following ischemic area. Liver transection is accomplished with bipolar vessel sealing device and endoscopic stapling device as appropriate. Specimen was extracted through a suprapubic incision. Liver raw surfaces were reviewed for bleeding and bile leaks. Operative time was 200 min with minimum blood loss and no need for blood transfusion. Recovery was uneventful, and the patient was discharged on the fifth postoperative day. Histological examination revealed clear surgical margins. Mesohepatectomy can be safely performed laparoscopically in selected patients and by surgeons with expertise in both liver surgery and laparoscopic techniques. The use of the intrahepatic Glissonian approach may help to identify the exact limits of the mesohepatectomy to avoid ischemic injury of the remnant liver.
Resumo:
Epidemiological studies have provided evidence that high consumption of tomatoes effectively reduces the risk of reactive oxygen species (ROS)-mediated diseases such as cancer. Tomatoes are rich sources of lycopene, a potent singlet oxygen-quenching carotenoid. In addition to its antioxidant properties, lycopene shows an array of biological effects including antimutagenic and anticarcinogenic activities. In the present study, the chemopreventive action of lycopene was examined on DNA damage and clastogenic or aneugenic effects of H2O2 and n-nitrosodiethylamine (DEN) in the metabolically competent human hepatoma cell line (HepG2 cells). Lycopene at concentrations of 10. 25, and 50 mu M, was tested under three protocols: before, simultaneously, and after treatment with the mutagen, using the comet and micronucleus assays. Lycopene significantly reduced the genotoxicity and mutagenicity of H2O2 in all of the conditions tested. For DEN, significant reductions of primary DNA damage (comet assay) were detected when the carotenoid (all of the doses) was added in the cell culture medium before or simultaneously with the mutagen. In the micronucleus test, the protective effect of lycopene was observed only when added prior to DEN treatment. In conclusion, our results suggest that lycopene is a suitable agent for preventing chemically-induced DNA and chromosome damage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.