937 resultados para Tree Species Classification


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade, research in Computer Vision has developed several algorithms to help botanists and non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm combinations per species, and best value of k , the minimal cardinality of the set of candidate species that the tested algorithms render as best matches is also presented in this research

Relevância:

90.00% 90.00%

Publicador:

Resumo:

International audience

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The “dicótilo-palmácea” mixed forest is found in the fluvial plains (floodplains) of watercourses on the Ceará semiarid region (Brazil), distinguishing from the surrounding vegetation (caatinga) by the prevalence of larger tree species. In the river’s margins, presenting high variability in the extension of the riverbanks, arise floodplains in pedologic complexes mainly composed by neossols and argissols, resulting from the deposition of sediments. In these areas of high fertility soils and subjected to flooding during part of the year, it develops a particular type of riparian vegetation dominated by carnauba palm tree (Copernicia prunifera (Mill.) H.E. Moore) forming a particular type of riparian forest, designated by carnaubal palm forest. We aimed to carry out floristic and phytosociological surveys of carnauba palm forests located in the northern region of Ceará. The classical sigmatist method of Braun-Blanquet was applied and classification analysis (Twinspan) was perfomed. The field work occurred in March 2014 and 2016 in eight areas: Fazenda Pedra Branca (03º 37’ 10’’ S e 40º 18’ 30’’ W, 104 m asl), Vale do Rio Bom Jesus (04º 04’ 42’’ S e 39º 57’ 08’’ W, 200 m asl), Lagoa do Peixe (03º 56’ 28’’ S e 40º 23’ 23’’ W, 97 m asl), Fazenda Peixes (04º 06’ 03’’ S e 40º 32’ 43’’ W, 114 m asl), Fazenda Natividade (04º 02’ 50’’ S e 40º 29’ 03’’ W, 109 m asl), Fazenda Morro Alto (02º 53’ 42’’ S e 39º 54’ 51’’ W, 16 m asl), Fazenda Araticum (03º 04’ 58’’ S e 40º 09’ 36’’ W, 19 m asl) and Fazenda Experimental da UVA (03º 37' 04'' S 40º 18' 18'' W, 200 m asl).The floristic list consists of 170 species, distributed between 127 genera and 50 families. Twenty-seven Brazilian endemic species were identified, from which 8 are exclusive of the Caatinga biome. The Fabaceae was the most representative family, with the highest number of species (28), followed by Poaceae (17), Malvaceaea (14), Euphorbiaceae (12), Asteraceaea (9), Convolvulaceae and Rubiaceae (9). The dominant life forms were therophytes (34%), phanerophytes (30%) and chamaephytes (18%). Two communities were identified as a result of the classification analysis using the Twinspan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon dioxide (CO2), as a primary product of combustion, is a known factor affecting climate change and global warming. In Australia, CO2 emissions from biomass burning are a significant contributor to total carbon in the atmosphere and therefore, it is important to quantify the CO2 emission factors from biomass burning in order to estimate their magnitude and impact on the Australian atmosphere. This paper presents the quantification of CO2 emission factors for five common tree species found in South East Queensland forests, as well as several grasses taken from savannah lands in the Northern Territory of Australia, under controlled ‘fast burning’ and ‘slow burning’ laboratory conditions. The results showed that CO2 emission factors varied according to the type of vegetation and burning conditions, with emission factors for fast burning being 2574 ± 254 g/kg for wood, 394 ± 40 g/kg for branches and leaves, and 2181 ± 120 g/kg for grass. Under slow burning conditions, the CO2 emission factors were 218 ± 20 g/kg for wood, 392± 80 g/kg for branches and leaves, and 2027 ± 809 g/kg for grass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree-grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation. © 2007 Springer Science+Business Media B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The life history of Phalacrognathus muelleri (Macleay) is described and aspects of its biology discussed. The species is restricted to the wet tropics of northern Queensland where it breeds in rotting wood in rainforest. Larvae have been extracted from the wood of 27 tree species in 13 families. All larvae found were in wood attacked by white rot fungi. The final instar larva is described. Larva, pupa, and parasites are figured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae) is a common endophyte and opportunistic pathogen on more than 500 tree species in the tropics and subtropics. During routine disease surveys of plantations in Australia and Venezuela several isolates differing from L. theobromae were identified and subsequently characterized based upon morphology and ITS and EF1-a nucleotide sequences. These isolates grouped into three strongly supported clades related to but different from the known taxa, B. rhodina and L. gonubiensis, These have been described here as three new species L. venezuelensis sp. nov., L. crassispora sp. nov. and L. rubropurpurea sp. nov. The three could be distinguished easily from each other and the two described species of Lasiodiplodia, thus confirming phylogenetic separations. Furthermore all five Lasiodiplodia spp. now recognized separated from Diplodia spp. and Dothiorella spp. with 100% bootstrap support.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genus Corymbia is closely related to the genus Eucalyptus, and like Eucalyptus contains tree species that are important for sub-tropical forestry. Corymbia's close relationship with Eucalyptus suggests genetic studies in Corymbia should benefit from transfer of genetic information from its more intensively studied relatives. Here we report a genetic map for Corymbia spp. based on microsatellite markers identified de novo in Corymbia sp or transferred from Eucalyptus. A framework consensus map was generated from an outbred F 2 population (n = 90) created by crossing two unrelated Corymbia torelliana x C. citriodora subsp. variegata F1 trees. The map had a total length of 367 cM (Kosambi) and was composed of 46 microsatellite markers distributed across 13 linkage groups (LOD 3). A high proportion of Eucalyptus microsatellites (90%) transferred to Corymbia. Comparative analysis between the Corymbia map and a published Eucalyptus map identified eight homeologous linkage groups in Corymbia with 13 markers mapping on one or both maps. Further comparative analysis was limited by low power to detect linkage due to low genome coverage in Corymbia, however, there was no convincing evidence for chromosomal structural differences because instances of non-synteny were associated with large distances on the Eucalyptus map. Segregation distortion was primarily restricted to a single linkage group and due to a deficit of hybrid genotypes, suggesting that hybrid inviability was one factor shaping the genetic composition of the F2 population in this inter-subgeneric hybrid. The conservation of microsatellite loci and synteny between Corymbia and Eucalyptus suggests there will be substantial value in exchanging information between the two groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calotrope [Calotropis procera (Aiton) W.T.Aiton] is an exotic shrub or small tree species that is currently invading the tropical savannahs of northern Australia. A chemical trial involving 11 herbicides and four application methods (foliar, basal bark, cut stump and soil applied) was undertaken to identify effective chemicals to control calotrope. Of the foliar herbicides tested, imazapyr provided 100% mortality at the rates applied, and the higher rate of metsulfuron-methyl killed 100% of the treated plants. The herbicides 2,4-D butyl ester, fluroxypyr, triclopyr and triclopyr/picloram killed greater than 80% of the plants when applied by a basal bark or cut stump (when cut 5cm above ground level) method of application. Plants cut close to ground level (5cm) were controlled more effectively than plants cut 20cm above ground level. Chemical control (foliar and cut stump spraying) is a cost effective tool to treat calotrope densities <800plants/ha. Adoption of pasture management practices that promote perennial grasses, in conjunction with strategic chemical control, would further increase the effectiveness and reduce the costs of controlling vast areas of this weed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sandalwood oil is widely used in the medicinal, cosmetic and aromatherapy industries. The oil is distilled from the heartwood of the sandalwood tree Santalum - a genus of hemi-parasitic tree species occurring throughout South and Southeast Asia, Australia and the Pacific. With international concern on the sustainability Sandalwood oil (Fox, 2000), the quality of oil entering the market is being compromised either through extraction from underdeveloped heartwoods or through adulteration with lower grade Sandalwood oils or synthetic substitutes (Howes et al. 2004). Although no standard method exists to assess the quality of Sandalwood oil, the International Organisation for Standardisation recommends GCMS analysis of santalol oil content. NIR spectroscopy has had a demonstrated success for other essential oils (Schulz et al. 2004, Steur et al. 2001). In addition, NIR spectroscopy has also been applied as both a qualitative and quantitative analytical tool in the forestry industry (Steur et al. 2001). This project aimed to assess the ability of NIR spectroscopy as a non-invasive, rapid and cheap analytical alternative to GCMS for Santalol determination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Queensland's hardwood plantation industry is producing increasing volumes of sawlog, veneer and poles. Wood quality can sometimes be impaired in some plantation hardwoods when the growing trees are attacked by insect borers. Susceptibility to borer damage varies with the species as well as site conditions or location. The risk model developed from this project will enable the plantation industry to match tree species with appropriate growing conditions in Queensland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest destruction for agriculture continues to be a major threat to the rich biological diversity in the East Usambara Mountains in the north-eastern corner of Tanzania. The highest ratio of endemic plant and animal species found on 100 km2 anywhere in the world is depending on the remaining natural forests. Forests are vitally important for the local population in many different ways, and nationally they are an important source of water and hydroelectricity. The soils, of low fertility and mostly acidic Ferrasols, mainly have the nutrients in the topsoil. After clear-cutting, the soils soon become poor when the topsoil is eroded. High-value cardamom is nowadays unsustainably cultivated in the natural forests of the East Usambaras. The general aim was to study the possibilities to develop new profitable and sustainable agroforestry systems for the benefit of the local people that could contribute to relieving the pressure on the remaining natural forests in the East Usambara Mountains. Results from a spice crop agroforestry trial, established in cooperation with a local farmer, showed a clear advantage of intercropping cardamom (Elettaria cardamomum) and black pepper (Piper nigrum) with trees, especially with Grevillea robusta. The nitrogen fixing tree species Gliricidia sepium also improved the nitrogen and organic matter content of the soil over levels found in the natural forest. With improved agroforestry methods for spice production the households generated as much as13 times the net income obtained with traditional forest cultivation practices. There are thus sustainable and profitable ways to cultivate spices as cash crops in well-managed homegardens. However, the farmers need stable markets, access to credit and comprehensive extension services. The soil fertility depletion should be reversed with organic manure application and an enabling policy environment for the smallholder-farming sector. Strong farmers organisations and equal rights to resources and decision-making are needed. Organic spices have an increasing demand, and their export would be profitable for these farmers. What is, however, most needed for a change is a political will of a government that understands the importance of agricultural and forestry development for poverty reduction.