960 resultados para Transfer processes
Resumo:
Low viscosity domains such as localized shear zones exert an important control on the geodynamics of the uppermost mantle. Grain size reduction and subsequent strain localization related to a switch from dislocation to diffusion creep is one mechanism to form low viscosity domains. To sustain strain localization, the grain size of mantle minerals needs to be kept small over geological timescales. One way to keep olivine grain sizes small is by pinning of mobile grain boundaries during grain growth by other minerals (second phases). Detailed microstructural studies based on natural samples from three shear zones formed at different geodynamic settings, allowed the derivation of the olivine grain-size dependence on the second-phase content. The polymineralic olivine grain-size evolution with increasing strain is similar in the three shear zones. If the second phases are to pin the mobile olivine grain boundary the phases need to be well mixed before grain growth. We suggest that melt-rock and metamorphic reactions are crucial for the initial phase mixing in mantle rocks. With ongoing deformation and increasing strain, grain boundary sliding combined with mass transfer processes and nucleation of grains promotes phase mixing resulting in fine-grained polymineralic mixtures that deform by diffusion creep. Strain localization due to the presence of volumetrically minor minerals in polymineralic mantle rocks is only important at high strain deformation (ultramylonites) at low temperatures (<~800°C). At smaller strain and stress conditions and/or higher temperatures other parameters like overall energy available to deform a given rock volume, the inheritance of mechanical anisotropies or the presence of water or melts needs to be considered to explain strain localization in the upper mantle.
Resumo:
Natural deformation in carbonate mylonites bearing sheet silicates occurs via a complex interaction of granular flow and solution transfer processes and involves continuous cycles of dissolution, grain boundary diffusion, nucleation and growth. In this way, new sheet silicates (a) nucleate within voids formed by grain boundary sliding of calcite grains. (b) grow, and (c) rotate towards the shear plane. As a consequence, small mica grains show a wide range of orientations with respect to the shear plane, but moderate to large grains are subparallel both to each other and to the shear plane. Increases of average grain sizes with increasing temperature of sheet silicates in mica-rich layers is more pronounced than in mica-poor layers. In the calcitic matrix however, sheet silicates can only grow via solution-precipitation and mass transfer processes. Therefore, the observed grain size variability indicates drastic differences in mass transfer behavior between the individual layers, which might be related to differences in the fluid flux. Based on these observations, a conceptual model for the microfabric evolution in sheet silicate bearing mylonites is presented. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
En este artículo se presentan avances de una investigación, en el campo de la Educación Especial, que aborda los procesos de derivación de educación común a educación especial de niños y niñas que habitan en contexto de pobreza. Dado que la investigación se funda en el interés por documentar y visibilizar las tramas altamente naturalizadas de la cotidianeidad escolar, se plantea que las derivaciones a educación especial representadas en las intervenciones del Centro de Servicios Alternativos y Complementarios alertarían ante posibles procesos complejos y contradictorios de inclusión/exclusión escolar. Por un lado, se parte de concepciones que consideran que los contextos de pobreza significan un “déficit" en relación a las posibilidades educativas de niños/as, inscribiéndolo como una “carencia", “deficiencia", no sólo social y económica, sino también “cultural" y “simbólica", y ante ello la necesidad de pensar en una oferta educativa “adecuada" y “diferenciada". Por otro lado, esta oferta educativa es identificada con la educación especial a través de las intervenciones de los Centros de Servicios Alternativos y Complementarios, configurándose así circuitos escolares diferenciados que vincularían a la pobreza con la educación especial, “patologizando" las desigualdades sociales y económicas al interior del sistema educativo.
Resumo:
As a result of the variscan collision, several allochtonous complexes were emplaced on the Iberian margin in Devonian times, among them the Cabo Ortegal Complex comprising the Moeche ophiolitic sequence. Copper has been won from several mines (Piquitos I & II, Barqueira, Maruxa) from disseminated ores and thin massive sulphide layers in the Moeche Unit, a strongly deformed meta-volcanic sequence comprising mainly quartz-chlorite schists and mylonites, which defines the top of the ophiolite. The ores were metamorphosed and strongly deformed under brittle conditions (for pyrite), but their textures are often apparently post-deformational, due to very common solution-transfer processes; they are composed mostly of pyrite and chalcopyrite, with minor sphalerite, pyrrhotite, etc., and with traces of native gold and PGE. The geology, mineralogy, and geochemistry of the orebodies relate closely to VMS of the Cu-Zn (Cyprus) type. Fluid inclusion studies allowed an estimation of metamorphic conditions at pressures of 2/2’5 kb and T 325/350ºC. New determinations using the chlorite geothermometer yield temperatures around 320 ºC, corresponding to pressures near 2 kb according to the isochores deduced from the fluid inclusion study, although in the Barqueira mine higher temperatures, up to 350 ºC, are found, corresponding to presssures up to 2’5 kb. Pb isotopic compositions of pyrite point to a double source of Pb, i.e. a main mantle and a subordinate crustal source. The values for 87SR/86Sr in pyrite support this interpretation, but some results suggest later mobilization in an open system, corresponding to solution-transfer. Age determinations of pyrite deduced from the Pb isotope uranogenic graph, ≈ 480 Ma, do not fit with the metamorphic ages published for the Moeche Unit, and might point to the age of Pb extraction from the mantle.
Resumo:
Entre os inibidores de corrosão clássicos que já são utilizados na indústria do petróleo, foram estudadas a imidazolina oleica e a quaternária através de técnicas eletroquímicas, gravimétrica e analíticas, para avaliar a eficiência de inibição e como esses inibidores atuam em meio ácido. O meio agressivo foi uma solução de NaCl 3,5% em massa acidificada com ácido clorídrico até atingir um pH=2 com o objetivo de simular o ambiente de extração petrolífera. O substrato empregado foi o aço carbono 1020. As técnicas eletroquímicas utilizadas foram: monitoramento do potencial de circuito aberto, medidas de resistência de polarização linear, espectroscopia de impedância eletroquímica (EIE ) e curvas de polarização. Os valores das componentes real e imaginária de impedância indicam uma resistência maior aos processos de transferência de carga com o aumento da concentração dos inibidores e os Diagramas de Bode de ângulo de fase, revelaram a presença de uma camada de inibidor adsorvida sobre o metal com uma constante de tempo em altas frequências observada para a imidazolina oleica e quaternária. Para a imidazolina quaternária, verificou-se que só para tempos maiores de imersão é que o filme se adsorve de forma eficiente demonstrando uma cinética mais lenta de adsorção. Nos ensaios gravimétricos, os resultados de taxa de corrosão em m/ano foram decrescentes com o tempo após período de imersão de 30 dias, para ambas as imidazolinas. O uso das técnicas analíticas foi necessário a fim de se compreender melhor o comportamento das imidazolinas sobre o aço no meio estudado. Os resultados da análise de íons férricos em solução, por emissão atômica, foram obtidos durante várias amostragens durante o período do ensaio de perda de massa, e foi possível verificar um processo de inibição da corrosão até doze dias de imersão do metal, depois disto ocorre um disparo na quantidade de ferro liberado em solução, sugerindo que pode estar ocorrendo uma degradação do inibidor após 12 dias de imersão. Para esclarecer esse ponto, análises por espectroscopia Raman dos produtos de fundo formados durante os ensaios de perda de massa indicaramm que a degradação pode realmente estar ocorrendo. Foi confirmado, também por espectroscopia Raman sobre a superfície do aço após imersão prévia em solução contendo a imidazolina oleica, que há uma película adsorvida que protege o metal do meio agressivo. Técnica de microscopia eletrônica de varredura foi utilizada para caracterizar os corpos de prova na ausência e presença do inibidor, depois dos ensaios eletroquímicos e foi possível caracterizar, através dessa técnica a maior eficiência inibidora do filme de imidazolina quaternária. Dois tipos de nanoconatiners foram avaliados para o encapsulamento das duas imidazolinas estudadas: nanocontainers a base do argilomineral haloiista e sílica mesoporosa tipo SBA 15. Resultados de impedância eletroquímica mostraram a liberação dos inibidores de corrosão encapsulados com o tempo de imersão. Análise na região do infravermelho por sonda de fibra ótica foi utilizada para comprovar química e qualitativamente a liberação do inibidor a partir dos nanorreservatórios, no meio agressivo.
Resumo:
Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt nanoparticles have been prepared in fused silica capillaries and tested in the Preferential Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the reduction by solvent method and the support used was a mesoporous SiO2 monolith prepared by a well-established sol–gel methodology. Comparison of the activity with an equivalent powder catalyst indicated that the microreactors show an enhanced catalytic behavior (both in terms of CO conversion and selectivity) due to the superior mass and heat transfer processes that take place inside the microchannel. TOF values at low CO conversions have been found to be ∼2.5 times higher in the microreactors than in the powder catalyst and the residence time seems to have a noticeable influence over the selectivity of the catalysts designed for this reaction. The Pd and Pt flexible microreactors developed in this work have proven to be effective for the CO oxidation reaction both in the presence and absence of H2, standing out as a very interesting and suitable option for the development of CO purification systems of small dimensions for portable and on-board applications.
Resumo:
We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.
Resumo:
Poster presented at the Bacterial Electron Transfer Processes and their Regulation Meeting, European Federation of Biotechnology Microbial Physiology Section, 15-18 March 2015, Vimeiro, Portugal.
Resumo:
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) Å, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) Å, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) Å, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) Å, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) Å, b = 16.225(4) Å, c = 18.371(5) Å, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.
Resumo:
This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.
Resumo:
Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.
Resumo:
We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.
Resumo:
In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.
Resumo:
Based on the relationship Zener parameter (Z=second-phase size/second-phase volume fraction) vs. calcite grain size (dg), second-phase controlled aggregates and microstructures that are weakly affected by second-phases are discriminated. The latter are characterized by large but constant grain sizes, high calcite grain boundary fractions and crystallographic preferred orientations (CPO), while calcite grain size and calcite grain boundary fraction decrease continuously and CPO weakens with decreasing Z in second-phase controlled microstructures. These observations suggest that second-phase controlled microstructures predominantly deform via granular flow because pinning of calcite grain boundaries reduces the efficiency of dynamic recrystallization favoring mass transfer processes and grain boundary sliding. In contrast, the balance of grain size reduction and growth by dynamic recrystallization maintains a steady state grain size in microstructures that are only weakly affected by second-phases promoting a predominance of dislocation creep. With increasing temperature, the relationship between Z and dg persists but the calcite grain size increases continuously. Based on microstructures, the energy of each modifying process is calculated and its relative contribution is compared with energies of the competing processes (surface energy, dragging energy, dynamic recrystallization energy). The steady state microstructures result from a temperature-dependent energy minimization procedure of the system.