997 resultados para Toughening Mechanisms
Resumo:
Dense ZrB2-SiC (25-30 vol%) composites have been produced by reactive hot pressing using stoichiometric Zr, B4C, C and Si powder mixtures with and without Ni addition at 40 MPa, 1600 degrees C for 60 min. Nickel, a common additive to promote densification, is shown not to be essential; the presence of an ultra-fine microstructure containing a transient plastic ZrC phase is suggested to play a key role at low temperatures, while a transient liquid phase may be responsible at temperatures above 1350 degrees C. Hot Pressing of non-stoichiometric mixture of Zr, B4C and Si at 40 MPa, 1600 degrees C for 30 min resulted in ZrB2-ZrCx-SiC (15 vol%) composites of similar to 98% RD.
Resumo:
The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.
Resumo:
K-Cl cotransporter 2 (KCC2) maintains a low intracellular Cl concentration required for fast hyperpolarizing responses of neurons to classical inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. Decreased Cl extrusion observed in genetically modified KCC2-deficient mice leads to depolarizing GABA responses, impaired brain inhibition, and as a consequence to epileptic seizures. Identification of mechanisms regulating activity of the SLC12A5 gene, which encodes the KCC2 cotransporter, in normal and pathological conditions is, thus, of extreme importance. Multiple reports have previously elucidated in details a spatio-temporal pattern of KCC2 expression. Among the characteristic features are an exclusive neuronal specificity, a dramatic upregulation during embryonic and early postnatal development, and a significant downregulation by neuronal trauma. Numerous studies confirmed these expressional features, however transcriptional mechanisms predetermining the SLC12A5 gene behaviour are still unknown. The aim of the presented thesis is to recognize such transcriptional mechanisms and, on their basis, to create a transcriptional model that would explain the established SLC12A5 gene behaviour. Up to recently, only one KCC2 transcript has been thought to exist. A particular novelty of the presented work is the identification of two SLC12A5 gene promoters (SLC12A5-1a and SLC12A5-1b) that produce at least two KCC2 isoforms (KCC2a and KCC2b) differing by their N-terminal parts. Even though a functional 86Rb+ assay reveals no significant difference between transport activities of the isoforms, consensus sites for several protein kinases, found in KCC2a but not in KCC2b, imply a distinct kinetic regulation. As a logical continuation, the current work presents a detailed analysis of the KCC2a and KCC2b expression patterns. This analysis shows an exclusively neuron-specific pattern and similar expression levels for both isoforms during embryonic and neonatal development in rodents. During subsequent postnatal development, the KCC2b expression dramatically increases, while KCC2a expression, depending on central nervous system (CNS) area, either remains at the same level or moderately decreases. In an attempt to explain both the neuronal specificity and the distinct expressional kinetics of the KCC2a and KCC2b isoforms during postnatal development, the corresponding SLC12A5-1a and SLC12A5-1b promoters have been subjected to a comprehensive bioinformatical analysis. Binding sites of several transcription factors (TFs), conserved in the mammalian SLC12A5 gene orthologs, have been identified that might shed light on the observed behaviour of the SLC12A5 gene. Possible roles of these TFs in the regulating of the SLC12A5 gene expression have been elucidated in subsequent experiments and are discussed in the current thesis.
Resumo:
Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.
Resumo:
Plants are capable of recognizing phytopathogens through the perception of pathogen-derived molecules or plant cell-wall degradation products due to the activities of pathogen-secreted enzymes. Such elicitor recognition events trigger an array of inducible defense responses involving signal transduction networks and massive transcriptional re-programming. The outcome of a pathogen infection relies on the balance between different signaling pathways, which are integrated by regulatory proteins. This thesis characterized two key regulatory components: a damage control enzyme, chlorophyllase 1 (AtCHL1), and a transcription factor, WRKY70. Their roles in defense signaling were then investigated. The Erwinia-derived elicitors rapidly activated the expression of AtCLH1 and WRKY70 through different signaling pathways. The expression of the AtCHL1 gene was up-regulated by jasmonic acid (JA) but down-regulated by salicylic acid (SA), whereas WRKY70 was activated by SA and repressed by JA. In order to elucidate the functions of AtCLH1 and WRKY70 in plant defense, stable transgenic lines were produced where these genes were overexpressed or silenced. Additionally, independent knockout lines were also characterized. Bacterial and fungal pathogens were then used to assess the contribution of these genes to the Arabidopsis disease resistance. The transcriptional modulation of AtCLH1 by either the constitutive over-expression or RNAi silencing caused alterations in the chlorophyll-to-chlorophyllide ratio, supporting the claim that chlorophyllase 1 has a role in the chlorophyll degradation pathway. Silencing of this gene led to light-dependent over-accumulation of the reactive oxygen species (ROS) in response to infection by Erwinia carotovora subsp. carotovora SCC1. This was followed by an enhanced induction of SA-dependent defense genes and an increased resistance to this pathogen. Interestingly, little effect on the pathogen-induced SA accumulation at the early infection was observed, suggesting that action of ROS might potentiate SA signaling. In contrast, the pathogen-induced JA production was significantly reduced in the RNAi silenced plants. Moreover, JA signaling and resistance to Alternaria brassicicola were impaired. These observations provide support for the argument that the ROS generated in chloroplasts might have a negative impact on JA signaling. The over-expression of WRKY70 resulted in an enhanced resistance to E. carotovora subsp. carotovora SCC1, Pseudomonas syringae pv. tomato DC3000 and Erysiphe cichoracearum UCSC1, whilst an antisense suppression or an insertional inactivation of WRKY70 led to a compromised resistance to E. carotovora subsp. carotovora SCC1 and to E. cichoracearum UCSC1 but not to P. syringae pv. tomato DC3000. Gene expression analysis revealed that WRKY70 activated many known defense-related genes associated with the SAR response but suppressed a subset of the JA-responsive genes. In particular, I was able to show that both the basal and the induced expression of AtCLH1 was enhanced by the antisense silencing or the insertional inactivation of WRKY70, whereas a reduction in AtCLH1 expression was observed in the WRKY70 over-expressors following an MeJA application or an A. brassicicola infection. Moreover, the SA-induced suppression of AtCLH1 was relieved in wrky70 mutants. These results indicate that WRKY70 down-regulates AtCLH1. An epistasis analysis suggested that WRKY70 functions downstream of the NPR1 in an SA-dependent signaling pathway. When challenged with A. brassicicola, WRKY70 over-expressing plants exhibited a compromised disease resistance while wrky70 mutants had the opposite effect. These results confirmed the WRKY70-mediated inhibitory effects on JA signaling. Furthermore, the WRKY70-controlled suppression of A. brassicicola resistance was mainly through an NPR1-dependent mechanism. Taking all the data together, I suggest that the pathogen-responsive transcription factor WRKY70 is a common component in both SA- and JA-dependent pathways and plays a crucial role in the SA-mediated suppression of JA signaling.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.
Resumo:
Exposure to water-damaged buildings and the associated health problems have evoked concern and created confusion during the past 20 years. Individuals exposed to moisture problem buildings report adverse health effects such as non-specific respiratory symptoms. Microbes, especially fungi, growing on the damp material have been considered as potential sources of the health problems encountered in these buildings. Fungi and their airborne fungal spores contain allergens and secondary metabolites which may trigger allergic as well as inflammatory types of responses in the eyes and airways. Although epidemiological studies have revealed an association between damp buildings and health problems, no direct cause-and-effect relationship has been established. Further knowledge is needed about the epidemiology and the mechanisms leading to the symptoms associated with exposure to fungi. Two different approaches have been used in this thesis in order to investigate the diverse health effects associated with exposure to moulds. In the first part, sensitization to moulds was evaluated and potential cross-reactivity studied in patients attending a hospital for suspected allergy. In the second part, one typical mould known to be found in water-damaged buildings and to produce toxic secondary metabolites was used to study the airway responses in an experimental model. Exposure studies were performed on both naive and allergen sensitized mice. The first part of the study showed that mould allergy is rare and highly dependent on the atopic status of the examined individual. The prevalence of sensitization was 2.7% to Cladosporium herbarum and 2.8% to Alternaria alternata in patients, the majority of whom were atopic subjects. Some of the patients sensitized to mould suffered from atopic eczema. Frequently the patients were observed to possess specific serum IgE antibodies to a yeast present in the normal skin flora, Pityrosporum ovale. In some of these patients, the IgE binding was partly found to be due to binding to shared glycoproteins in the mould and yeast allergen extracts. The second part of the study revealed that exposure to Stachybotrys chartarum spores induced an airway inflammation in the lungs of mice. The inflammation was characterized by an influx of inflammatory cells, mainly neutrophils and lymphocytes, into the lungs but with almost no differences in airway responses seen between the satratoxin producing and non-satratoxin producing strain. On the other hand, when mice were exposed to S. chartarum and sensitized/challenged with ovalbumin the extent of the inflammation was markedly enhanced. A synergistic increase in the numbers of inflammatory cells was seen in BAL and severe inflammation was observed in the histological lung sections. In conclusion, the results in this thesis imply that exposure to moulds in water damaged buildings may trigger health effects in susceptible individuals. The symptoms can rarely be explained by IgE mediated allergy to moulds. Other non-allergic mechanisms seem to be involved. Stachybotrys chartarum is one of the moulds potentially responsible for health problems. In this thesis, new reaction models for the airway inflammation induced by S. chartarum have been found using experimental approaches. The immunological status played an important role in the airway inflammation, enhancing the effects of mould exposure. The results imply that sensitized individuals may be more susceptible to exposure to moulds than non-sensitized individuals.
Resumo:
Aminoglycoside resistance in six clinically isolated Staphylococcus aureus was evaluated. Genotypical examination revealed that three isolates (HLGR-10, HLGR-12, and MSSA-21) have aminoglycoside-modifying enzyme (AME) coding genes and another three (GRSA-2, GRSA-4, and GRSA-6) lacked these genes in their genome. Whereas isolates HLGR-10 and HLGR-14 possessed bifunctional AME coding gene aac(6′)-aph(2′′), and aph(3′)-III and showed high-level resistance to gentamycin and streptomycin, MSSA-21 possessed aph(3′)-III and exhibited low resistance to gentamycin, streptomycin, and kanamycin. The remaining three isolates (GRSA-2, GRSA-4, and GRSA-6) exhibited low resistance to all the aminoglycosides because they lack aminoglycoside-modifying enzyme coding genes in their genome. The transmission electron microscopy of the three isolates revealed changes in cell size, shape, and septa formation, supporting the view that the phenomenon of adaptive resistance is operative in these isolates.
Resumo:
Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.