987 resultados para Tomografía computada volumétrica Cone-Beam
Resumo:
INTRODUCTION: This report of 2 cases describes the diagnostic procedures used to identify 2 Stafne's bone cavities (SBC) found in unusually anterior locations in the mandible, both mimicking periapical lesions of endodontic origin. METHODS: In the first patient, a 47-year-old man, an SBC was diagnosed in the area of teeth #27, 28, and 29. In the second patient, a 62-year-old man, the SBC was a fortuitous finding, because this patient was referred for dental implant therapy. RESULTS: In both cases, the final diagnosis was achieved by using limited cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI). In both patients, the lingual bone cavity was found to be occupied by accessory salivary gland tissue. CONCLUSIONS: The combination of CBCT and MRI as noninvasive diagnostic techniques seems ideal to avoid surgical explorations, incisional biopsies, or enucleations of the lesion for diagnostic purposes.
Resumo:
In this prospective case series study, 20 patients with an implant-borne single crown following early implant placement with simultaneous contour augmentation were followed for 6 years. Clinical, radiologic, and esthetic parameters were assessed. In addition, cone beam computed tomography (CBCT) was used at 6 years to examine the facial bone wall. During the study period, all 20 implants were successfully integrated, and the clinical parameters remained stable over time. Pleasing esthetic outcomes were noted, as assessed by the pink esthetic scores. None of the implants developed mucosal recession of 1 mm or more. The periapical radiographs yielded stable peri-implant bone levels, with a mean DIB of 0.44 mm at 6 years. The CBCT scans showed that all 20 implants had a detectable facial bone wall at 6 years, with a mean thickness of around 1.9 mm. In summary, this prospective case series study demonstrated stable peri-implant hard and soft tissues for all 20 implants, and pleasing esthetic outcomes overall. The follow-up of 6 years confirmed that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration (GBR) was able to establish and maintain a facial bone wall in all 20 patients.
Resumo:
BACKGROUND Early implant placement with simultaneous contour augmentation is documented with short- and medium-term studies. The long-term stability of contour augmentation is uncertain. METHODS In this prospective, cross-sectional study, 41 patients with an implant-borne single crown were examined twice, in 2006 and 2010. Clinical, radiologic, and esthetic parameters were assessed at both examinations. In addition, a cone beam computed tomographic (CBCT) image was obtained during the second examination to assess the dimensions of the facial bone wall. RESULTS All 41 implants demonstrated ankylotic stability without signs of peri-implant infection at both examinations. The clinical parameters remained stable over time. Satisfactory esthetic outcomes were noted, as assessed by the pink and white esthetic score (PES/WES) indices. Overall, the PES scores were slightly higher than the WES scores. None of the implants developed mucosal recession over time, as confirmed by values of the distance between implant shoulder and mucosal margin and cast measurements. The periapical radiographs yielded stable peri-implant bone levels, with a mean distance between implant shoulder and first visible bone-implant contact value of 2.18 mm. The CBCT analysis demonstrated a mean thickness of the facial bone wall ≈2.2 mm. In two implants (4.9%) no facial bone wall was detectable radiographically. CONCLUSIONS This prospective cross-sectional study demonstrates stable peri-implant hard and soft tissues for all 41 implants examined and satisfactory esthetic outcomes overall. The follow-up of 5 to 9 years confirmed again that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration was able to establish and maintain a facial bone wall in 95% of patients.
Resumo:
Dimensional alterations of the facial bone wall following tooth extractions in the esthetic zone have a profound effect on treatment outcomes. This prospective study in 39 patients is the first to investigate three-dimensional (3D) alterations of facial bone in the esthetic zone during the initial 8 wks following flapless tooth extraction. A novel 3D analysis was carried out, based on 2 consecutive cone beam computed tomographies (CBCTs). A risk zone for significant bone resorption was identified in central areas, whereas proximal areas yielded only minor changes. Correlation analysis identified a facial bone wall thickness of ≤ 1 mm as a critical factor associated with the extent of bone resorption. Thin-wall phenotypes displayed pronounced vertical bone resorption, with a median bone loss of 7.5 mm, as compared with thick-wall phenotypes, which decreased by only 1.1 mm. For the first time, 3D analysis has allowed for documentation of dimensional alterations of the facial bone wall in the esthetic zone of humans following extraction. It also characterized a risk zone prone to pronounced bone resorption in thin-wall phenotypes. Vertical bone loss was 3.5 times more severe than findings reported in the existing literature.
Resumo:
The purpose of this study was to analyze the width and height of edentulous sites in the posterior maxilla using cone beam computed tomography (CBCT) images from patients referred for implant therapy. A total of 122 CBCT scans were included in the analysis, resulting in a sample size of 252 edentulous sites. The orofacial crest width was measured in coronal slices, perpendicular to the alveolar ridge. The bone height was analyzed in the respective sagittal slices. Additionally, the following secondary outcome parameters were evaluated: the morphology of the sinus floor, the presence of septa in the maxillary sinus, and the thickness of the sinus membrane. The mean crest width for all analyzed sites was 8.28 mm, and the mean bone height was 7.22 mm. The percentage of patients with a crest width of less than 6 mm was 27% in premolar sites and 7.8% in molar sites. The bone height decreased from premolar to molar areas, with a high percentage of first and second molar sites exhibiting a bone height of less than 5 mm (54.12% and 44.64%, respectively). Regarding the morphology of the sinus floor, 53% of the edentulous sites exhibited a flat configuration. A septum was present in 67 edentulous sites (26.59%). Analysis of the sinus membrane revealed 88 sites (34.9%) with increased mucosal thickness (> 2 mm). For the crest width, the location of the edentulous site and the morphology of the sinus floor were both statistically significant variables. For the crest width and mean bone height, the location of the edentulous site and the morphology of the sinus floor were both statistically significant variables. The study confirmed that a high percentage of edentulous sites in the posterior maxilla do require sinus floor elevation to allow the placement of dental implants. Therefore, a detailed three-dimensional radiograph using CBCT is indicated in most patients for proper treatment planning.
Resumo:
This paper presents a clinical and anatomical review of the mental foramen (MF) based on recent publications (since 1990). Usually, the MF is located below the 2nd premolar or between the two premolars, but it may also be positioned below the 1st premolar or below the mesial root of the 1st molar. At the level of the MF, lingual canals may join the mandibular canal (hence the term "crossroads"). Accessory MF are frequently described in the literature with large ethnic variations in incidence. The emergence pattern of the mental canal usually has an upward and posterior direction. The presence and extent of an "anterior loop" of the mental canal may be overestimated with panoramic radiography. Limited cone-beam computed tomography currently appears to be the most precise radiographic technique for assessment of the "anterior loop". The mental nerve exiting the MF usually has three to four branches for innervation of the soft tissues of the chin, lower lip, facial gingiva and mucosa in the anterior mandible. The clinician is advised to observe a safety distance when performing incisions and osteotomies in the vicinity of the MF.
Resumo:
PURPOSE To investigate the adequacy of potential sites for insertion of orthodontic mini-implants (OMIs) in the anterior alveolar region (delimited by the first premolars) through a systematic review of studies that used computed tomography (CT) or cone beam CT (CBCT) to assess anatomical hard tissue parameters, such as bone thickness, available space, and bone density. MATERIALS AND METHODS MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers published between 1980 and September 2011. An extensive search strategy was performed that included the key words "computerized (computed) tomography" and "mini-implants." Information was extracted from the eligible articles for three anatomical areas: maxillary anterior buccal, maxillary anterior palatal, and mandibular anterior buccal. Quantitative data obtained for each anatomical variable under study were evaluated qualitatively with a scoring system. RESULTS Of the 790 articles identified by the search, 8 were eligible to be included in the study. The most favorable area for OMI insertion in the anterior maxilla (buccally and palatally) and mandible is between the canine and the first premolar. The best alternative area in the maxilla (buccally) and the mandible is between the lateral incisor and the canine, while in the maxillary palatal area it is between the central incisors or between the lateral incisor and the canine. CONCLUSIONS Although there is considerable heterogeneity among studies, there is a good level of agreement regarding the optimal site for OMI placement in the anterior region among investigations of anatomical hard tissue parameters based on CT or CBCT scans. In this context, the area between the lateral incisor and the first premolar is the most favorable. However, interroot distance seems to be a critical factor that should be evaluated carefully.
Resumo:
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and OPEN ACCESS Materials 2013, 6 5292 suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
Le collage d’un fil torsadé souple sur les faces linguales des six dents antérieures mandibulaires est une modalité de contention couramment utilisée. Les complications sont rares mais peuvent être assez sérieuses pour provoquer des dégâts biologiques. Cet article présente une complication sérieuse d’un fil de contention torsadé souple, collé en lingual. Quatre ans après son traitement orthodontique, un homme de 20 ans a consulté pour la rupture d’un fil de contention torsadé souple. L’examen clinique a montré un torque radiculo-vestibulaire d’environ 35° d’une dent. Une image en tomographie volumique à faisceau conique (Cone-Beam Computed Tomography ou CBCT) a montré que la racine et l’apex de la dent étaient presque totalement hors de l’os du côté vestibulaire. Étonnamment, la vitalité de la dent était préservée. La dent a été ramenée presque jusqu’à sa position initiale; cliniquement, seule une récession gingivale a persisté. Les orthodontistes et les dentistes devraient être conscients des complications possibles des contentions collées. Les patients devraient être clairement informés de la manière dont les problèmes peuvent être détectés à un stade précoce.
Resumo:
OBJECTIVES To assess the diagnostic value of panoramic views (2D) of patients with impacted maxillary canines by a group of trained orthodontists and oral surgeons, and to quantify the subjective need and reasons for further three-dimensional (3D) imaging. MATERIALS AND METHODS The study comprises 60 patients with panoramic radiographs (2D) and cone beam computed tomography (CBCT) scans (3D), and a total of 72 impacted canines. Data from a standardized questionnaire were compared within (intragroup) and between (intergroup) a group of orthodontists and oral surgeons to assess possible correlations and differences. Furthermore, the questionnaire data were compared with the findings from the CBCT scans to estimate the correlation within and between the two specialties. Finally, the need and reasons for further 3D imaging was analysed for both groups. RESULTS When comparing questionnaire data with the analysis of the respective CBCT scans, orthodontists showed probability (Pr) values ranging from 0.443 to 0.943. Oral surgeons exhibited Pr values from 0.191 to 0.946. Statistically significant differences were found for the labiopalatal location of the impacted maxillary canine (P = 0.04), indicating a higher correlation in the orthodontist group. The most frequent reason mentioned for the further need of 3D analysis was the labiopalatal location of the impacted canines. Oral surgeons were more in favour of performing further 3D imaging (P = 0.04). CONCLUSIONS Orthodontists were more likely to diagnose the exact labiopalatal position of impacted maxillary canines when using panoramic views only. Generally, oral surgeons more often indicated the need for further 3D imaging.
Resumo:
BACKGROUND Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. METHODS Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. RESULTS The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. CONCLUSIONS The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.
Resumo:
With a steadily increasing impact of oral implant placement in daily practice, the number of reported surgical complications has also been growing. Recent studies reveal significant variation in the occurrence and morphology of neurovascular canal structures in the jaw bone. All those structures contain a neurovascular bundle, the diameter of which may be large enough to cause clinically significant damage. Therefore, it has become obvious that presurgical radiographic planning of jaw-bone surgery should pay attention to the neurovascular structures and their likely variations, in addition to examining many other factors, such as jaw-bone morphology and volume, bone trabecular structure and the absence of bone or tooth pathology. A critical review is accomplished to explore the potential risks for neurovascular complications after implant placement, with evidence derived from histologic, anatomic, clinical and radiologic studies. In this respect, cross-sectional imaging can often be advocated, as it is obvious that the inherent three-dimensional nature of jaw-bone anatomy may clearly benefit from a detailed spatial image analysis. Although this could initially be realized by conventional computed tomography, in current practice, dentomaxillofacial cone beam computed tomography might be used, as it offers high-quality images at low radiation dose levels and costs.
Resumo:
PURPOSE The objectives of this systematic review are (1) to quantitatively estimate the esthetic outcomes of implants placed in postextraction sites, and (2) to evaluate the influence of simultaneous bone augmentation procedures on these outcomes. MATERIALS AND METHODS Electronic and manual searches of the dental literature were performed to collect information on esthetic outcomes based on objective criteria with implants placed after extraction of maxillary anterior and premolar teeth. All levels of evidence were accepted (case series studies required a minimum of 5 cases). RESULTS From 1,686 titles, 114 full-text articles were evaluated and 50 records included for data extraction. The included studies reported on single-tooth implants adjacent to natural teeth, with no studies on multiple missing teeth identified (6 randomized controlled trials, 6 cohort studies, 5 cross-sectional studies, and 33 case series studies). Considerable heterogeneity in study design was found. A meta-analysis of controlled studies was not possible. The available evidence suggests that esthetic outcomes, determined by esthetic indices (predominantly the pink esthetic score) and positional changes of the peri-implant mucosa, may be achieved for single-tooth implants placed after tooth extraction. Immediate (type 1) implant placement, however, is associated with a greater variability in outcomes and a higher frequency of recession of > 1 mm of the midfacial mucosa (eight studies; range 9% to 41% and median 26% of sites, 1 to 3 years after placement) compared to early (type 2 and type 3) implant placement (2 studies; no sites with recession > 1 mm). In two retrospective studies of immediate (type 1) implant placement with bone graft, the facial bone wall was not detectable on cone beam CT in 36% and 57% of sites. These sites had more recession of the midfacial mucosa compared to sites with detectable facial bone. Two studies of early implant placement (types 2 and 3) combined with simultaneous bone augmentation with GBR (contour augmentation) demonstrated a high frequency (above 90%) of facial bone wall visible on CBCT. Recent studies of immediate (type 1) placement imposed specific selection criteria, including thick tissue biotype and an intact facial socket wall, to reduce esthetic risk. There were no specific selection criteria for early (type 2 and type 3) implant placement. CONCLUSIONS Acceptable esthetic outcomes may be achieved with implants placed after extraction of teeth in the maxillary anterior and premolar areas of the dentition. Recession of the midfacial mucosa is a risk with immediate (type 1) placement. Further research is needed to investigate the most suitable biomaterials to reconstruct the facial bone and the relationship between long-term mucosal stability and presence/absence of the facial bone, the thickness of the facial bone, and the position of the facial bone crest.
Resumo:
HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.