908 resultados para Three-phase power flow
Resumo:
This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.
Resumo:
An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
Includes bibliography
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.
Resumo:
This paper presents efficient geometric parameterization techniques using the tangent and the trivial predictors for the continuation power flow, developed from observation of the trajectories of the load flow solution. The parameterization technique eliminates the Jacobian matrix singularity of load flow, and therefore all the consequent problems of ill-conditioning, by the addition of the line equations which pass through the points in the plane determined by the variables loading factor and the real power generated by the slack bus, two parameters with clear physical meaning. This paper also provides an automatic step size control around the maximum loading point. Thus, the resulting method enables not only the calculation of the maximum loading point, but also the complete tracing of P-V curves of electric power systems. The technique combines robustness with ease of understanding. The results to the IEEE 300-bus system and of large real systems show the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A new approach called the Modified Barrier Lagrangian Function (MBLF) to solve the Optimal Reactive Power Flow problem is presented. In this approach, the inequality constraints are treated by the Modified Barrier Function (MBF) method, which has a finite convergence property: i.e. the optimal solution in the MBF method can actually be in the bound of the feasible set. Hence, the inequality constraints can be precisely equal to zero. Another property of the MBF method is that the barrier parameter does not need to be driven to zero to attain the solution. Therefore, the conditioning of the involved Hessian matrix is greatly enhanced. In order to show this, a comparative analysis of the numeric conditioning of the Hessian matrix of the MBLF approach, by the decomposition in singular values, is carried out. The feasibility of the proposed approach is also demonstrated with comparative tests to Interior Point Method (IPM) using various IEEE test systems and two networks derived from Brazilian generation/transmission system. The results show that the MBLF method is computationally more attractive than the IPM in terms of speed, number of iterations and numerical conditioning. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The international growing concern for the human exposure to magnetic fields generated by electric power lines has unavoidably led to imposing legal limits. Respecting these limits, implies being able to calculate easily and accurately the generated magnetic field also in complex configurations. Twisting of phase conductors is such a case. The consolidated exact and approximated theory regarding a single-circuit twisted three-phase power cable line has been reported along with the proposal of an innovative simplified formula obtained by means of an heuristic procedure. This formula, although being dramatically simpler, is proven to be a good approximation of the analytical formula and at the same time much more accurate than the approximated formula found in literature. The double-circuit twisted three-phase power cable line case has been studied following different approaches of increasing complexity and accuracy. In this framework, the effectiveness of the above-mentioned innovative formula is also examined. The experimental verification of the correctness of the twisted double-circuit theoretical analysis has permitted its extension to multiple-circuit twisted three-phase power cable lines. In addition, appropriate 2D and, in particularly, 3D numerical codes for simulating real existing overhead power lines for the calculation of the magnetic field in their vicinity have been created. Finally, an innovative ‘smart’ measurement and evaluation system of the magnetic field is being proposed, described and validated, which deals with the experimentally-based evaluation of the total magnetic field B generated by multiple sources in complex three-dimensional arrangements, carried out on the basis of the measurement of the three Cartesian field components and their correlation with the field currents via multilinear regression techniques. The ultimate goal is verifying that magnetic induction intensity is within the prescribed limits.
Resumo:
Solid oxide fuel cell (SOFC) technology has the potential to be a significant player in our future energy technology repertoire based on its ability to convert chemical energy into electrical energy. Infiltrated SOFCs, in particular, have demonstrated improved performance and at lower cost than traditional SOFCs. An infiltrated electrode comprises porous ceramic scaffolding (typically constructed from the oxygen ion conducting material) that is infiltrated with electron conducting and catalytic particles. Two important SOFC electrode properties are effective conductivity and three phase boundary density (TPB). Researchers study these electrode properties separately, and fail to recognize them as competing properties. This thesis aims to (1) develop a method to model the TPB density and use it to determine the effect of porosity, scaffolding particle size, and pore former size on TPB density as well as to (2) compare the effect of porosity, scaffolding particle size, and pore former size on TPB density and effective conductivity to determine a desired set of parameters for infiltrated SOFC electrode performance. A computational model was used to study the effect of microstructure parameters on the effective conductivity and TPB density of the infiltrated SOFC electrode. From this study, effective conductivity and TPB density are determined to be competing properties of SOFC electrodes. Increased porosity, scaffolding particle size, and pore former particle size increase the effective conductivity for a given infiltrate loading above percolation threshold. Increased scaffolding particle size and pore former size ratio, however, decreases the TPB density. The maximum TPB density is achievable between porosities of 45% and 60%. The effect of microstructure parameters are more prominent at low loading with scaffolding particle size being the most significant factor and pore former size ratio being the least significant factor.
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.