914 resultados para Three Factor Model
Resumo:
This dissertation is comprised of three essays in the economics of education. In the first essay, I examine how college students' major choice and major switching behavior responds to major-specific labor market shocks. The second essay explores the incidence and persistence of overeducation for workers in the United States. The final essay examines the role that students' cognitive and non-cognitive skills play in their transition from secondary to postsecondary education, and how the effect of these skills are moderated by race, gender, and socioeconomic status.
Resumo:
We formally compare fundamental factor and latent factor approaches to oil price modelling. Fundamental modelling has a long history in seeking to understand oil price movements, while latent factor modelling has a more recent and limited history, but has gained popularity in other financial markets. The two approaches, though competing, have not formally been compared as to effectiveness. For a range of short- medium- and long-dated WTI oil futures we test a recently proposed five-factor fundamental model and a Principal Component Analysis latent factor model. Our findings demonstrate that there is no discernible difference between the two techniques in a dynamic setting. We conclude that this infers some advantages in adopting the latent factor approach due to the difficulty in determining a well specified fundamental model.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
Aim: The aim of this study was to examine the psychometric properties of a prosociality scale within the palliative nursing context, and then examine the impact of prosocial behaviour in relation to job and educational satisfaction among palliative nurses. Methods: An online cross-sectional survey was conducted in 25 Italian palliative care centres, with a total of 107 nurses completing the prosociality scale by Caprara et al (2005). Exploratory and confirmatory factor analyses were examined to evaluate a multidimensional model of prosociality. Results: A three-factor solution with a second order factor fitted the data well. The three dimensions extracted were labelled as helping, empathy, and sharing. Participants reported high levels of prosociality. In addition, prosociality was positively associated with job and educational satisfaction. Conclusions: The prosociality scale was valid and reliable when tested with palliative nurses. Although prosociality may be embedded in nurses’ personalities, this quality should be actively promoted to expand and improve the culture and the ethics of nursing.
Resumo:
This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed timevarying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible realtime term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.
Resumo:
This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.
Resumo:
This Ph.D. thesis contains 4 essays in mathematical finance with a focus on pricing Asian option (Chapter 4), pricing futures and futures option (Chapter 5 and Chapter 6) and time dependent volatility in futures option (Chapter 7). In Chapter 4, the applicability of the Albrecher et al.(2005)'s comonotonicity approach was investigated in the context of various benchmark models for equities and com- modities. Instead of classical Levy models as in Albrecher et al.(2005), the focus is the Heston stochastic volatility model, the constant elasticity of variance (CEV) model and the Schwartz (1997) two-factor model. It is shown that the method delivers rather tight upper bounds for the prices of Asian Options in these models and as a by-product delivers super-hedging strategies which can be easily implemented. In Chapter 5, two types of three-factor models were studied to give the value of com- modities futures contracts, which allow volatility to be stochastic. Both these two models have closed-form solutions for futures contracts price. However, it is shown that Model 2 is better than Model 1 theoretically and also performs very well empiri- cally. Moreover, Model 2 can easily be implemented in practice. In comparison to the Schwartz (1997) two-factor model, it is shown that Model 2 has its unique advantages; hence, it is also a good choice to price the value of commodity futures contracts. Fur- thermore, if these two models are used at the same time, a more accurate price for commodity futures contracts can be obtained in most situations. In Chapter 6, the applicability of the asymptotic approach developed in Fouque et al.(2000b) was investigated for pricing commodity futures options in a Schwartz (1997) multi-factor model, featuring both stochastic convenience yield and stochastic volatility. It is shown that the zero-order term in the expansion coincides with the Schwartz (1997) two-factor term, with averaged volatility, and an explicit expression for the first-order correction term is provided. With empirical data from the natural gas futures market, it is also demonstrated that a significantly better calibration can be achieved by using the correction term as compared to the standard Schwartz (1997) two-factor expression, at virtually no extra effort. In Chapter 7, a new pricing formula is derived for futures options in the Schwartz (1997) two-factor model with time dependent spot volatility. The pricing formula can also be used to find the result of the time dependent spot volatility with futures options prices in the market. Furthermore, the limitations of the method that is used to find the time dependent spot volatility will be explained, and it is also shown how to make sure of its accuracy.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
The purpose of this study was to improve an instrument used to assess career aspirations (the Career Aspiration Scale) so the revised measure can be used with confidence by counseling psychologists in research and practice. Three studies were conducted with a total of 583 undergraduate and graduate women. Results of these studies provided support for the reliability and validity of the Career Aspiration Scale-Revised when used with undergraduate and graduate women. Results from confirmatory factor analyses indicated that the three-factor solution had good model fit, thus supporting a revised measure with three subscales assessing achievement, leadership, and educational aspirations. Suggestions for future research and practice using the Career Aspiration Scale- Revised are provided.
Resumo:
This dissertation consists of four studies examining two constructs related to time orientation in organizations: polychronicity and multitasking. The first study investigates the internal structure of polychronicity and its external correlates in a sample of undergraduate students (N = 732). Results converge to support a one-factor model and finds measures of polychronicity to be significantly related to extraversion, agreeableness, and openness to experience. The second study quantitatively reviews the existing research examining the relationship between polychronicity and the Big Five factors of personality. Results reveal a significant relationship between extraversion and openness to experience across studies. Studies three and four examine the usefulness of multitasking ability in the prediction of work related criteria using two organizational samples (N = 175 and 119, respectively). Multitasking ability demonstrated predictive validity, however the incremental validity over that of traditional predictors (i.e., cognitive ability and the Big Five factors of personality) was minimal. The relationships between multitasking ability, polychronicity, and other individual differences were also investigated. Polychronicity and multitasking ability proved to be distinct constructs demonstrating differential relationships with cognitive ability, personality, and performance. Results provided support for multitasking performance as a mediator in the relationship between multitasking ability and overall job performance. Additionally, polychronicity moderated the relationship between multitasking ability and both ratings of multitasking performance and overall job performance in Study four. Clarification of the factor structure of polychronicity and its correlates will facilitate future research in the time orientation literature. Results from two organizational samples point to work related measures of multitasking ability as a worthwhile tool for predicting the performance of job applicants.
Resumo:
The present study tested a nomological net of work engagement that was derived from its extant research. Two of the main work engagement models that have been presented and empirically tested in the literature, the JD-R model and Kahn’s model, were integrated to test the effects that job features and personal characteristics can have on work engagement through the psychological conditions of meaningfulness, safety, and availability. In this study, safety refers to psychological perceptions of safety and not workplace safety behaviors. The job features that were tested in this model included person-job fit, autonomy, co-worker relations, supervisor support, procedural justice, and interactional justice, while the personal characteristics consisted of self-consciousness, self-efficacy, extraversion, and neuroticism. Thirty-four hypotheses and a conceptual model were tested in order to establish the viability of this nomological net of work engagement in which it was expected that meaningfulness would mediate the relationships between job features and work engagement, safety would mediate the relationships that job features and personal characteristics have with work engagement, and availability (physical, emotional, and cognitive resources) would mediate the relationships that personal characteristics have with work engagement. Furthermore, analyses were run in order to determine the factor structure of work engagement, assess whether or not it exhibits differential validity from organizational commitment and job satisfaction, and confirm that it is positively related to the outcome variable of organizational citizenship behavior (OCB). The final sample consisted of 500 workers from an online labor market who responded to a questionnaire composed of measures of all constructs included in this study. Findings show that work engagement is best represented as a three-factor construct, composed of vigor, dedication and absorption. Furthermore, support was found for the distinction of work engagement from the related constructs of organizational commitment and job satisfaction. With regard to the proposed model, meaningfulness proved to be the strongest predictor of work engagement. Results show that it partially mediates the relationships that all job features have with work engagement. Safety proved to be a partial mediator of the relationships that autonomy, co-worker relations, supervisor support, procedural justice, interactional justice, and self-efficacy have with work engagement, and fully mediate the relationship between neuroticism and work engagement. Findings also show that availability partially mediates the positive relationships that extraversion and self-efficacy have with work engagement, and fully mediates the negative relationship that neuroticism has with work engagement. Finally, a positive relationship was found between work engagement and OCB. Research and organizational implications are discussed.
Resumo:
The Posttraumatic Growth Inventory (PTGI) is frequently used to assess positive changes following a traumatic event. The aim of the study is to examine the factor structure and the latent mean invariance of PTGI. A sample of 205 (M age = 54.3, SD = 10.1) women diagnosed with breast cancer and 456 (M age = 34.9, SD = 12.5) adults who had experienced a range of adverse life events were recruited to complete the PTGI and a socio-demographic questionnaire. We use Confirmatory Factor Analysis (CFA) to test the factor-structure and multi-sample CFA to examine the invariance of the PTGI between the two groups. The goodness of fit for the five-factor model is satisfactory for breast cancer sample (χ2(175) = 396.265; CFI = .884; NIF = .813; RMSEA [90% CI] = .079 [.068, .089]), and good for non-clinical sample (χ2(172) = 574.329; CFI = .931; NIF = .905; RMSEA [90% CI] = .072 [.065, .078]). The results of multi-sample CFA show that the model fit indices of the unconstrained model are equal but the model that uses constrained factor loadings is not invariant across groups. The findings provide support for the original five-factor structure and for the multidimensional nature of posttraumatic growth (PTG). Regarding invariance between both samples, the factor structure of PTGI and other parameters (i.e., factor loadings, variances, and co-variances) are not invariant across the sample of breast cancer patients and the non-clinical sample.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Background: In a number of malaria endemic regions, tourists and travellers face a declining risk of travel associated malaria, in part due to successful malaria control. Many millions of visitors to these regions are recommended, via national and international policy, to use chemoprophylaxis which has a well recognized morbidity profile. To evaluate whether current malaria chemo-prophylactic policy for travellers is cost effective when adjusted for endemic transmission risk and duration of exposure. a framework, based on partial cost-benefit analysis was used Methods: Using a three component model combining a probability component, a cost component and a malaria risk component, the study estimated health costs avoided through use of chemoprophylaxis and costs of disease prevention (including adverse events and pre-travel advice for visits to five popular high and low malaria endemic regions) and malaria transmission risk using imported malaria cases and numbers of travellers to malarious countries. By calculating the minimal threshold malaria risk below which the economic costs of chemoprophylaxis are greater than the avoided health costs we were able to identify the point at which chemoprophylaxis would be economically rational. Results: The threshold incidence at which malaria chemoprophylaxis policy becomes cost effective for UK travellers is an accumulated risk of 1.13% assuming a given set of cost parameters. The period a travellers need to remain exposed to achieve this accumulated risk varied from 30 to more than 365 days, depending on the regions intensity of malaria transmission. Conclusions: The cost-benefit analysis identified that chemoprophylaxis use was not a cost-effective policy for travellers to Thailand or the Amazon region of Brazil, but was cost-effective for travel to West Africa and for those staying longer than 45 days in India and Indonesia.