1000 resultados para Thermal-pluvial
Resumo:
Polystyrene peroxide has been synthesized and its decomposition has been studied by thermogravimetry and differential thermal analysis. Polystyrene peroxide has been found to decompose exothermically at about 110°C. The activation energy for the decomposition was estimated to be 30 kcal/mole both by the Jacobs and Kureishy method and by fitting the α versus time curves to the first-order kinetic equation. This suggests that the rate-controlling step in the decomposition of polystyrene peroxide is cleavage of the O---O bond.
Resumo:
A one-step thermal extrusion process has been investigated for the modification of starch with alcohol in order to improve the film properties. Unmodified starch/glycerol mixtures containing Methanol (MetOH), ethanol (EtOH) and their combinations (5, 10 and 15 wt%) were thermally extruded to produce thermoplastic. The final hot-pressed film showed increased stiffness and crystallinity, while having decreased moisture uptake due to oxidation and alcohol complexing molecular interactions. The Young’s Modulus, tensile strength and elongation at break increased by 60%, 15% and 32% respectively, for 5 wt% MetOH derived film, compared to the control. The film moisture content was reduced by up to 15 wt% for 5 wt% EtOH-derived film. Generally the crystallinity increased in the alcohol-derived films due to an increased complexing of alcohol with starch forming the VH polymorph. Fourier transform infra-red (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopic analysis were used to discuss the molecular interactions between the starch and alcohol molecules.
Resumo:
In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.
Resumo:
This paper presents the results on a resin-rich machine insulation system subjected to varying stresses such as electrical (2.6 to 13.3 MV/m) and thermal (40 to 155° C) acting together. Accelerated electro-thermal aging experiments subsequently have been performed to understand the insulation degradation The interpretations are based on several measured properties like capacitance, loss tangent, ac resistance, leakage current, and partial discharge quantities. The results indicate that the changes in properties are not significant below a certain temperature for any applied stress, Beyond this temperature large variations are observed even for low electrical stresses. Electrothermal aging studies reveal that the acceleration of the insulation degradation and the ultimate time to failure depends on the relative values of temperature and voltage stresses. At lower temperatures, below critical, material characteristics of the system predominate whereas beyond this temperature, other phenomena come into play causing insulation deterioration. During aging under combined stresses, it appears that the prevailing temperature of the system has a significant role in the insulation degradation and ultimate failure.
Resumo:
Hydrazinium acetate, metavanadate, sulfite, sulphamate and thiocyanate have been prepared by the reaction of corresponding ammonium salts with hydrazine hydrate. The compounds were characterised by chemical analysis and infrared spectra. Thermal behaviour of these hydrazinium derivatives have been investigated using thermogravimetry and differential thermal analysis.
Resumo:
Alternating differential scanning calorimetric (ADSC) studies have been performed to understand the thermal behavior of bulk GexSe35-xTe65 glasses (17 <= x <= 25); it is found that the glasses with x <= 20 exhibit two crystallization exotherms (T-c1 & T-c2). On the other hand, those with x >= 20.5, show a single crystallization reaction upon heating. The exothermic reaction at T-c1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at T-c2 is associated with the additional crystallization of rhombohedral Ge-Te phase. The glass transition temperature of GexSe35-xTe65 glasses is found to show a linear but not-steep increase, indicating a progressive, but a gradual increase in network connectivity with Ge addition. It is also found that T-c1 of GexSe35-xTe65 glasses with x <= 20, increases progressively with Ge content and eventually merges with T-c2 at x approximate to 20.5 (< r > = 2.41); this behavior has been understood on the basis of the reduction in Te-Te bonds of lower energy and increase in Ge-Te bonds of higher energy, with increasing Ge content. Apart from the interesting composition dependent crystallization, an anomalous melting behavior is also exhibited by the GexSe35-xTe65 glasses.
Resumo:
Thermal characterization of surface-micromachined microheaters is carried out from their dynamic response to electrothermal excitations. An electrical equivalent circuit model is developed for the thermo-mechanical system. The mechanical parameters are extracted from the frequency response obtained using a laser Doppler vibrometer. The resonant frequencies of the microheaters are measured and compared with FEM simulations. The thermal time constants are obtained from the electrical equivalent model by fitting the model response to the measured frequency response. Microheaters with an active area of 140 µm × 140 µm have been realized on two different layers (poly-1 and poly-2) with two different air gaps (2 µm and 2.75 µm). The effective time constants, combining thermal and mechanical responses, are in the range of 0.13–0.22 ms for heaters on the poly-1 layer and 1.9 µs–0.15 ms for microheaters on the poly-2 layer. The thermal time constants of the microheaters are in the range of a few microseconds, thus making them suitable for sensor applications that need a faster thermal response.
Resumo:
Metal acetate hydrazinates, M(CH3COO)2(N2H4)2 (M = Mn, Co, Ni, Zn, Cd) have been prepared and characterized by chemical analysis and infrared absorption spectra. Thermal decomposition of the complexes has been studied using simultaneous TG-DTG-DTA technique. Metal acetate hydrazinates decompose exothermically through metal acetate intermediates to the respective metal oxides.
Resumo:
Transparent glasses in the system 3BaO-3TiO2-B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.
Resumo:
Effect of heating rate on melting and crystallization of polyamide fibres has been examined using differential scanning calorimetric (DSC) technique. Peak temperature for melting (T m) and crystallization (T k) get suppressed with the increase in the heating rate which has been explained on the basis of chain orientation. Heat of melting (DeltaH m) and crystallization (DeltaH k) have been measured.DeltaH m vs. T m shows a nonlinear dependence which has been explained on the basis of entropy change. Quantitative difference inDeltaH m andDeltaH k values has been explained on the basis of orientation and degradation of the polymer.
Resumo:
The isolation and characterization of the products formed during the irreversible thermal denaturation of enzyme RNAase-A are described. RNAase-A, when maintained in aqueous solution at pH 7.0 and 70° for 2 h, gives soluble products which have been fractionated by gel filtration on Sephadex G-75 into four components. These components are designated RNAase-At1, RNAase-At2, RNAase-At3 and RNAase-At4 according to the order of their elution from Sephadex G-75. RNAase-At4 shows the same specific activity towards yeast RNA as native RNAase-A and is virtually indistinguishable from it by the physical methods employed. However, chromatography on CM-cellulose separates it into three components that show the same u.v. spectra and specific activity towards yeast RNA as native RNAase-A. RNAase-At1, RNAase-At2and RNAase-At3 are all structurally altered derivatives of RNAase-A and they exhibit low specific activity (5–10%) towards yeast RNA. In the presence of added S-protein, all these derivatives show greatly enhanced enzymic activity. RNAase-At1 and RNAase-At2 are polymers, covalently crosslinked by intermolecular disulfide bridges; whereas RNAase-At3 is a monomer. Physical studies such as 1H-n.m.r., sedimentation analysis, u.v. absorption spectra and CD spectra reveal that RNAase-At3 is a unfolded derivative of RNAase-A. However, it is seen to possess sufficient residual structure which gives rise to a low but easily detectable enzymic activity.
Resumo:
A study has been made of the differential thermal analysis of (i) potassium perchlorate in powdered form, (ii) potassium perchlorate in pelletized form, (iii) potassium perchlorate recrystallized from liquid NH3, and (iv) potassium perchlorate preheated for 24 hours at 375°. Pretreatment of potassium perchlorate leads to a desensitization of both endothermic and exothermic processes. Additionally, the pretreatment tends to convert the symmetric exotherm into an asymmetric exotherm due to merging of the two exotherms. An analysis of the factors causing asymmetry in the exotherm has thrown fresh light on the mechanism of thermal decomposition of potassium perchlorate.
Resumo:
The salicylato complex of cobalt was synthesized and its structure established to be [Co(sal)2] · 4 H2O, where, sal =, from elemental analysis, IR spectroscopy, magnetic susceptibility, cryoscopy and conductivity. The X-ray diffractogram of the complex has been given. Thermal decomposition has been studied in air by thermogravimetry (TG), differential thermal analysis and differential scanning calorimetry. TG shows three main steps of decomposition. The intermediates formed at various stages were collected and analysed. From the TG results and chemical analysis of the intermediates, a mechanism has been proposed for the thermal decomposition of the complex, leading to the oxide formation in the final stage.
Resumo:
There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.
Resumo:
An empirical relation for temperature–independent molar polarization is suggested. When this relation was used, the thermal expansivity was estimated correctly from refractive index data.