965 resultados para Thermal structure in the sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigating stock identity of marine species in a multidisciplinary holistic approach can reveal patterns of complex spatial population structure and signatures of potential local adaptation. The population structure of common sole (Solea solea) in the Mediterranean Sea was delineated using genomic and otolith data, including single nucleotide polymorphisms (SNPs) markers and otolith data. SNPs were correlated with environmental and spatial variables to evaluate the impact of these features on the actual genetic population structure. Integrated holistic approach was applied to combine the tracers with different spatio-temporal scales. SNPs data was also used to illustrate the population structure of European hake (Merluccius merluccius) within the Alboran Sea, extending into the neighboring Mediterranean Sea and Atlantic Ocean. The aim was to identify patterns of neutral and potential adaptive genetic variation by applying seascape genomic framework. Results from both genetic and otolith data suggested significant divergence among putative populations of common sole, confirming a clear separation between Western, Adriatic Sea and Eastern Mediterranean Sea. Evidence of fine-scale population structure in the Western Mediterranean Sea was observed at outlier loci level and in the Adriatic. Our study not only indicates that separation among Mediterranean sole population is led primarily by neutral processes, but it also suggests the presence of local adaptation influenced by environmental and spatial factors. The holistic approach by considering the spatio-temporal scales of variation confirmed that the same pattern of separation between these geographical sites is currently occurring and has occurred for many generations. Results showed the occurrence of population structure in Merluccius merluccius by detecting westward–eastward differentiation among populations and distinct subgroups at a fine geographical scale using outlier SNPs. These results enhance the knowledge of the population structure of commercially relevant species to support the application of spatial stock assessment models, including a redefinition of fishery management units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study on upper ocean responses to atmospheric forcing (associated with cyclone passage) in North Indian Ocean revealed significant variability between AS and BoB. The analysis of cyclone frequency during 1947 to 2006 exhibited lesser frequency of cyclones in AS than that of BoB. The analysis also revealed significant reduction in cyclone frequency after the year 1976 with substantial reduction during monsoon season. The long term SST data at selected points in AS and BoB could not reveal any relation with reduction in cyclone frequency. However the SLP at same locations exhibited considerable increase during mid 1970’s, which could have contributed to the observed reduction in cyclone frequency after the year 1976.The response in waves during cyclone passage exhibited significant asymmetry on either side of the track in AS and BoB and the response is observed at 100’s of kilometers away from the track. The significant clockwise rotation in wave direction is observed on the right side of the track starting from near the track to far away locations, which existed for a longer duration. However, the anticlockwise rotation in wave direction is observed over a shorter distance on the left side of the track and dissipated immediately.Inertial oscillation is observed in surface current and in the mixed layer temperature associated with cyclone passage, which revealed the role of relative location(s) on either side of the track. The inertial peak closer to the local inertial period indicates maximum transfer of energy during the cyclone passage in both AS and BoB. The absence of strong inertial oscillation even with clockwise rotation in surface current and wind indicates the dominant role of duration of strong wind in generating inertial oscillation.The oceanic response associated with cyclone passage reveal the variable response(s) which depends on cyclone intensity, the proximity to track and cyclone translation speed. It is observed that resonance with wind generates higher response in surface current, wave and SST on the right side of the track and it lasts for a longer duration. The maximum oceanic response is observed at a few kilometers away on right side of the track. However lesser rightward bias in the location of maximum cooling is observed for cyclones with low cyclone translation speed. The response on the left side of the track is less and is limited over a shorter distance and dissipates immediately. It is observed that the ocean response, in general, increases with intensity of cyclones. However the differential cooling produced by the same intensity cyclones in AS and in BoB indicates the dominant role of low cyclone translation speed in oceanic response.The surface cooling exhibited strikingly differential responses between AS and BoB. The TMI-SST and buoy observations exhibited significant cooling for a longer duration in AS compared to that of BoB. The spatial extent of cooling is also much higher in AS than that of BoB. The wide spread cooling associated with cyclone passage in AS indicates the dominant role of thermal structure in oceanic response in AS than that of BoB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees S, 42 degrees 08`W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 in s(-1), increases the atmospheric boundary layer in 214 in when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 in. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 in and 5.4 in for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts in Cabo Frio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-optical characteristics of phytoplankton have been observed during two-year monitoring in the western Black Sea. High variability in light absorption coefficient of phytoplankton was due to change of pigment concentration and chlorophyll a specific absorption coefficient. A relationships between light absorption coefficients and chlorophyll a concentration have been found: for the blue maximum (a_ph(440) = 0.0413x**0.628; R**2 = 0.63) and for the red maximum (?_ph(678) = 0.0190x**0.843; R**2 = 0.83). Chlorophyll a specific absorption coefficients decreased while pigment concentration in the Sea increased. Observed variability in chlorophyll a specific absorption coefficient at chlorophyll a concentrations <1.0 mg/m**3 had seasonal features and was related with seasonal change of intracellular pigment concentration. Ratio between the blue and red maxima decreased with increasing chlorophyll a concentration (? = 2.14 x**-0.20; R**2 = 0.41). Variability of spectrally averaged absorption coefficient of phytoplankton (a'_ph ) on 95% depended on absorption coefficient at the blue maximum (y = 0.421x; R**2 = 0.95). Relation of a_ph with chlorophyll a concentration was described by a power function (y = 0.0173x**0.0709; R**2 = 0.65). Change of spectra shape was generally effected by seasonal dynamics of intracellular pigment concentration, and partly effected by taxonomic and cell-size structure of phytoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958-2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particular features of tectonic structure and anomalous distribution of geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. Age of the South Okhotsk Basin is confirmed by data on kinematics and corresponds to 50 km thickness of the lithosphere. This is in accordance with thickness value obtained by magnetotelluric soundings. Comparative analysis of model geothermal background and measured heat flow values on the Akademii Nauk Rise is performed. Analysis points to abnormally high (~20%) measured heat flow agrees with high negative gradient of gravity anomalies. Estimates of deep heat flow and basement age of riftogenic basins in the Sea of Okhotsk were carried out in the following areas: Deryugin Basin (18 Ma, Early Miocene), TINRO Basin (12 Ma, Middle Miocene), and West Kamchatka Basin (23 Ma, Late Oligocene). Temperatures at boundaries of the main lithological complexes of the sedimentary cover are calculated and zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data a kinematic model of the region of the Sea of Okhotsk for period of 36 Ma was calculated and constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6?m and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus bacteria: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR1_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus biomass: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de dout. em Biologia, especialidade de Biologia Molecular, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is a commentary on the experiences that motivated my decision to become a human ecologist and ethnobiologist. These experiences include the pleasure of studying and of having the sense of being within nature, as well as the curiosity towards understanding the world and minds of local people. In particular, such understanding could be driven by addressing the challenging questions that originate in the interactions of such individuals with their natural surroundings. I have been particularly interested in the sea and the riverine forests that are inhabited by coastal or riverine small-scale fishers. Sharing the distinctive world of these fishers enjoyably incited my curiosity and challenged me to understand why fishers and their families 'do as they do' for their livelihoods including their beliefs. This challenge involved understanding the rationality (or the arguments or views) that underlies the decisions these individuals make in their interaction with nature. This curiosity was fundamental to my career choice, as were a number of reading interests. These reading interests included political economy and philosophy; evolution and sociobiology; evolutionary, human, and cultural ecology; cultural transmission; fisheries; local knowledge; ecological economics; and, naturally, ethnobiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the developmental changes in pulmonary surfactant (PS) lipids throughout incubation in the sea turtle, Chelonia mydas. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) harvested from lung washings increased with advancing incubation, where secretion was maximal at pipping, coincident with the onset of pulmonary ventilation. The DSP/PL ratio increased, whereas the Chol/PL and the Chol/DSP ratio declined throughout development. The phospholipids, therefore, are independently regulated from Chol and their development matches that of mammals. To explore whether hypoxia could elicit an effect on the development of the PS system, embryos were exposed to a chronic dose of 17% O-2 for the final similar to 40% of incubation. Hypoxia did not affect incubation time, absolute, nor relative abundance of the surfactant lipids, demonstrating that the development of the system is robust and that embryonic development continues unabated under mild hypoxia. Hypoxia-incubated hatchlings had lighter wet lung weights than those from normoxia, inferring that mild hypoxia facilitates lung clearance in this species. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.