966 resultados para Thermal and Elastic Properties
Resumo:
Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.
Resumo:
We study the elasticity, topological defects, and hydrodynamics of the recently discovered incommensurate smectic (AIC) phase, characterized by two collinear mass density waves of incommensurate spatial frequency. The low-energy long-wavelength excitations of the system can be described by a displacement field u(x) and a ��phason�� field w(x) associated, respectively, with collective and relative motion of the two constituent density waves. We formulate the elastic free energy in terms of these two variables and find that when w=0, its functional dependence on u is identical to that of a conventional smectic liquid crystal, while when u=0, its functional dependence on w is the same as that for the angle variable in a slightly anisotropic XY model. An arbitrariness in the definition of u and w allows a choice that eliminates all relevant couplings between them in the long-wavelength elastic energy. The topological defects of the system are dislocations with nonzero u and w components. We introduce a two-dimensional Burgers lattice for these dislocations, and compute the interaction between them. This has two parts: one arising from the u field that is short ranged and identical to the interaction between dislocations in an ordinary smectic liquid crystal, and one arising from the w field that is long ranged and identical to the logarithmic interaction between vortices in an XY model. The hydrodynamic modes of the AIC include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics. The sound attenuations have a different direction dependence, however. The breakdown of hydrodynamics found in conventional smectic liquid crystals, with three of the five viscosities diverging as 1/? at small frequencies ?, occurs in these systems as well and is identical in all its details. In addition, there is a diffusive phason mode, not found in ordinary smectic liquid crystals, that leads to anomalously slow mechanical response analogous to that predicted in quasicrystals, but on a far more experimentally accessible time scale.
Resumo:
The temperature dependence of the longitudinal and shear ultrasound wave velocities in (As2S3)1-x(PbS)x glasses has been determined from 77 to 300K using a pulse echo interferometer. Elastic constants of the prepared glasses at room temperature have been computed from the experimental data. Both longitudinal and shear ultrasound wave velocities in these glasses show a linear temperature dependence with a negative temperature coefficient.
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Transition metal sulfite hydrazine hydrates, MSO3·xN2H4·yH2O whereM=Mn, Fe, Co, Ni and Zn have been prepared and characterized by chemical analysis, infrared spectra, thermoanalytical and combustion studies. The colours,x andy parameters of the complexes varied depending upon the preparation conditions. Thermal decomposition characteristics differ from metal to metal yielding metal oxides at relatively low temperatures.Mittels chemischer Analyse, IR-Spektren, thermoanalytischen und Verbrennungsstudien wurden die Hydrazinhydrate der hergestellten Übergangsmetallsulfite MSO3·xN2H4·yH2O mitM=Mn, Fe, Co, Ni und Zn beschrieben. Farbe sowie die Parameterx undy der Komplexe hängen von den Herstellungsbedingungen ab. Die thermische Zersetzung, bei der bei relativ niedrigen Temperaturen Metalloxide entstehen, ist von Metall zu Metall verschieden.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
Ferrocenyl conjugates 2-ferrocenylimidazophenanthroline (1) and 2-ferrocenylimidazophenanthrene (2) were prepared, characterized, and their photoinduced DNA cleavage and photocytotoxic activity were studied. 2-Phenylimidazophenanthroline (3) was used as a control species. Compound 2 was characterized by X-ray crystallography. The interaction of the compounds with double-stranded calf thymus DNA (CT DNA) was studied. The compounds show good binding affinity to CT DNA with K-b values of approximately 10(5) M-1. Thermal denaturation data suggest the groove binding nature of the compounds. The redox-active compounds show poor chemical nuclease activity in the presence of hydrogen peroxide and glutathione (GSH). Compound 1 exhibits significant DNA photocleavage activity in visible light of 476 and 532 nm. Compound 3 shows only moderate DNA cleavage activity. The positive effect of the ferrocenyl moiety is demonstrated by the DNA photocleavage data. Mechanistic investigations reveal the formation of superoxide as well as hydroxyl radicals as the active species. The photocytotoxicity of the compounds in HeLa cells was studied upon irradiation with visible light (400-700 nm). Compound 1 shows efficient photocytotoxic activity with an IC50 value of 13 mu M, while compounds 2 and 3 are less active with IC50 values of > 50 and 22 mu M, respectively.
Resumo:
The effect of hydrogen-plasma passivation on the optical and electrical properties of gallium antimonide bulk single crystals is presented. Fundamental changes of the radiative recombination after hydrogenation in undoped, zinc-doped, tellurium-doped, and codoped (with Zn and Te) GaSb are reported. The results of optical measurements indicate that passivation of acceptors is more efficient than that of the donors and, in general, the passivation efficiency depends on the doping level. Passivation of deep nonradiative centers is reflected by the gain of photoluminescence intensity and decrease in deep-level transient spectroscopy peak height. Extended defects like grain boundaries and dislocations have also been found to be passivated. The thermal stability of the passivated deep level and extended defects is higher than that of the shallow level. The kinetics of thermally released hydrogen in the bulk has been studied by reverse-bias annealing experiments.
Resumo:
Optical and structural properties of reactive ion beam sputter deposited CeO2 films as a function of oxygen partial pressures (P-O2) and substrate temperatures (T-s) have been investigated. The films deposited at ambient temperature with P-O2 of 0.01 Pa have shown a refractive index of 2.36 which increased to 2.44 at 400 degrees C. Refractive index and extinction coefficient are sensitive up to a T-s of similar to 200 degrees C. Raman spectroscopy and X-ray diffraction (XRD) have been used to characterise the structural properties. A preferential orientation of (220) was observed up to a T-s of 200 degrees C and it changed to (200) at 400 degrees C: and above. Raman line broadening, peak shift and XRD broadening indicate the formation of nanocrystalline phase for the films deposited up to a substrate temperature of 300 degrees C. However, crystallinity of the films were better for T-s values above 300 degrees C. In general both optical and structural properties were unusual compared to the films deposited by conventional electron beam evaporation, but were similar in some aspects to those deposited by ion-assisted deposition. Apart from thermal effects, this behavior is also attributed to the bombardment of backscattered ions/neutrals on the growing film as well as the higher kinetic energy of the condensing species, together resulting in increased packing density. (C) 1997 Elsevier Science S.A.
Resumo:
Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.
Resumo:
Glasses in the system (1 - x)Li2B4O7-xBi(2)WO(6) (0.1 less than or equal to x less than or equal to 0.35) were prepared by splat quenching technique. Powder X-ray diffraction (XRD) and differential thermal analysis (DTA) were employed to characterize the as-quenched glasses. High-resolution transmission electron microscopy (HR TEM) revealed the presence of fine, nearly spherical crystallites of Bi2WO6 varying from 1.5 to 20 nm in size, depending on x in the as-quenched glasses. The glasses (corresponding to x = 0.3) heat-treated at 723 K for 6 h gave rise to a clear crystalline phase of Bi2WO6 embedded in the Li2B4O7 glass matrix, as observed by X-ray studies. The dielectric constants of the as-quenched glasses as well as the glass-ceramics decreased with increase in frequency (40Hz-100 kHz) at 300 K, and the value obtained for the glass-ceramic (x = 0.2) is in agreement with the values predicted using Maxwell's model and the logarithmic mixture rule. The dielectric constants for both the as-quenched glass and the glass-ceramic increased with increase in temperature (300 - 873 K) and exhibited anomalies close to the onset of the crystallization temperature of the host glass matrix. The optical transmission properties:of these glass-ceramics were found to be compositional dependant. (C) 2000 Elsevier Science Ltd.
Resumo:
Glass nanocomposites in the system (1-x)Li2B4O7-xBi(2)WO(6) (0 less than or equal to x less than or equal to 0.35, in molar ratio) were fabricated by splat quenching technique. The as-quenched samples were X-ray amorphous. Differential Thermal Analyses (DTA) confirmed their glassy nature. The composites on heat-treatment at 720 K yielded monophasic crystalline bismuth tungstate in lithium borate glass matrix. The average size and the spherical nature of the dispersed crystallites were assessed via High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constants (epsilon(r)) of both the as-quenched and post heat-treated composites were found to increase with increase in x (bismuth tungstate content) at all the frequencies (100 Hz-40 MHz) in the temperature range 300 K-870 K. While the dielectric loss (D) decreased with increasing x. The pyroelectric coefficients of the as-quenched (consisting 20 nm sized crystallites) and 720 K heat-treated sample (x = 0.3) were determined as a function of temperature (300 K-873 K) and the values obtained at room temperature were 20 and 60 muC/m(2) K respectively. The as-quenched and heat-treated (720 K) glass nanocomposites exhibited ferroelectric (P Vs E) hysteresis loops. The remnant polarization and coercive field of the heat-treated glass nanocomposite at 300 K were respectively 2.597 muC/cm(2) and 543 V/cm. These glass nanocomposites were birefringent in the 300-873 K temperature range.
Resumo:
A study was done on pulsed laser deposited relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with template layers to observe the influence of the template layers on physical and electrical properties. Initial results, showed that perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on Pt/Ti/SiO2/Si substrates. The films were grown at 300°C and then annealed in a rapid thermal annealing furnace in the temperature range of 750-850°C to induce crystallization. Comparison of the films annealed at different temperatures revealed a change in crystallinity, perovskite phase formation and grain size. These results were further used to improve the quality of the perovskite PMN-PT phase by inserting thin layers of TiO2 on the Pt substrate. These resulted in an increase in perovskite phase in the films even at lower annealing temperatures. Dielectric studies on the PMN-PT films show very high values of dielectric constant (1300) at room temperature, which further improved with the insertion of the template seed layer. The relaxor properties of the PMN-PT were correlated with Vogel-Fulcher theory to determine the actual nature of the relaxation process.