890 resultados para Terrestrial mammals
Resumo:
The comparison of palaeoclimate records on their own independent timescales is central to the work of the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) network. For the North Atlantic region, an event stratigraphy has been established from the high-precision Greenland ice-core records and the integrated GICC05 chronology. This stratotype provides a palaeoclimate signal to which the timing and nature of palaeoenvironmental change recorded in marine and terrestrial archives can be compared. To facilitate this wider comparison, without assuming synchroneity of climatic change/proxy response, INTIMATE has also focussed on the development of tools to achieve this. In particular the use of time-parallel marker horizons e.g. tephra layers (volcanic ash). Coupled with the recent temporal extension of the Greenland stratotype, as part of this special issue, we present an updated INTIMATE event stratigraphy highlighting key tephra horizons used for correlation across Europe and the North Atlantic. We discuss the advantages of such an approach, and the key challenges for the further integration of terrestrial palaeoenvironmental records with those from ice cores and the marine realm.
Resumo:
Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.
Resumo:
Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (∆14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid ∆14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish ∆14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.
Resumo:
Carbon and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food-webs but relies on different 13C fractionation in aquatic and terrestrial primary producers. However dissolved inorganic carbon (DIC) is partly comprised of 13C depleted respiration of terrestrial C and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contribution of old and recently fixed terrestrial C. DIC in alkaline lakes is partially derived from weathering of 14C-free carbonaceous bedrock This
yields an artificial age offset leading samples to appear significantly older than their actual age. As such, 14C can be used as a biomarker to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘old’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic but alkaline lake. High winter δ15N values in calanoid zooplankton (δ15N =24‰) relative to phytoplankton and POM (δ15N =6‰ and 12‰ respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from inflowing rivers (87 and 75 years BP respectively) but not phytoplankton (355 years BP). Summer calanoid δ13N, δ15N and 14C (312 years BP) indicate greater reliance on phytoplankton. There is also temporal and spatial variation in DIC, DOC and POM C isotopes.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.
Resumo:
Lake food webs were in the past viewed as being fuelled solely by primary production – i.e. by photosynthetic plants and algae. However this has changed as the exports of terrestrial areas into lakes have been taken into account. Previously, terrestrial carbon in lakes was thought to have been buried in sediments or exported to the atmosphere, however recent studies have indicated that terrestrial carbon can supplement primary production in some lakes, or in others be the dominant source of production for the lake food web. In this study radiocarbon has been used in conjunction with stable carbon and nitrogen isotopes to show the utilisation of terrestrial carbon in the food web. The fate of terrestrial carbon in the lake will be discussed as well as the possible mechanisms for the transfer of terrestrial carbon for utilisation in the lake.
Resumo:
Invasive alien aquatic species, including marine and freshwater macroinvertebrates, have become increasingly important in terms of both environmental and socio-economic impacts. In order to assess their environmental and economic costs, we applied the Generic Impact Scoring System (GISS) and performed a comparison with other taxa of invaders in Europe. Impacts were scored into six environmental and six socio-economic categories, with each category containing five impact levels. Among 49 aquatic macroinvertebrates, the most impacting species were the Chinese mitten crab, Eriocheir sinensis (Milne-Edwards, 1853) and the zebra mussel, Dreissena polymorpha (Pallas, 1771). The highest impacts found per GISS impact category were, separately; on ecosystems, through predation, as competitors, and on animal production. Eleven species have an impact score > 10 (high impact) and seven reach impact level 5 in at least one impact category (EU blacklist candidates), the maximum score that can be given is 60 impact points. Comparisons were drawn between aquatic macroinvertebrates and vertebrate invaders such as fish, mammals and birds, as well as terrestrial arthropods, revealing invasive freshwater macroinvertebrates to be voracious predators of native prey and damaging to native ecosystems compared with other taxa. GISS can be used to compare these taxa and will aid policy making and targeting of invasive species for management by relevant agencies, or to assist in producing species blacklist candidates.
Resumo:
Insertion of lux genes, encoding for bioluminescence in naturally bioluminescent marine bacteria, into the genome of Pseudomonas fluorescens resulted in a bioluminescent strain of this terrestrial bacterium. The lux- marked bacterium was used to toxicity test the chlorobenzene series. By correlating chlorobenzenes 50% effective concentration (EC50) values against physiochemical parameters, the physiochemical properties of chlorobenzenes that elicit toxic responses were investigated. The results showed that the more chlorinated the compounds, the more toxic they were to lux-marked P. fluorescens. Furthermore, it was shown that the more symmetrical the compound, the greater its toxicity to P. fluorescens. In general, the toxicity of a chlorobenzene was inversely proportional to its solubility (S) and directly proportional to its lipophilicity (K(ow). By correlating lux- marked P. fluorescens EC50 values, determined for chlorobenzenes, with toxicity values determined using Pimephales promelas (fathead minnow), Cyclotella meneghiniana (diatom), and Vibrio fischeri (marine bacterium), it was apparent that lux-marked P. fluorescens correlated well with freshwater species such as the diatoms and fathead minnow but not with the bioluminescent marine bacterium V. fischeri. The implications of these findings are that a terrestrial bacterium such as P. fluorescens should be used for toxicity testing of soils and freshwaters rather than the marine bacterium V. fischeri.
Resumo:
The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.
Resumo:
A suite of lipid biomarkers were investigated from surface sediments and particulate matter across hydrographically distinct zones associated with the western Irish Sea gyre and the seasonal bloom. The aim was to assess the variation of organic matter (OM) composition, production, distribution and fate associated with coastal and southern mixed regions and also the summer stratified region. Based on the distribution of a suite of diagnostic biomarkers, including phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids, diatoms, dinoflagellates and green algae were identified as major contributors of marine organic matter (MOM) in this setting. The distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids indicate that copepod grazing represents an important process for mineralising this primary production. Net tow data from 2010 revealed much greater phytoplankton and zooplankton biomass in well-mixed waters compared to stratified waters. This appears to be largely reflected in MOM input to surface sediments. Terrestrial organic matter (TOM), derived from higher plants, was identified as a major source of OM regionally, but was concentrated in proximity to major riverine input at the Boyne Estuary and Dundalk Bay. Near-bottom residual circulation and the seasonal gyre also likely play a role in the fate of TOM in the western Irish Sea.
Resumo:
BACKGROUND: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to 'fill in the gaps' between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.
RESULTS: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.
CONCLUSIONS: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.
Resumo:
Os nemátodes são um grupo de invertebrados, não segmentados que formam um Filo (Nematoda) bem definido e claramente distinto dos outros grupos de organismos. Este Filo constitui um dos grupos animais mais disseminados no planeta, e em termos de número de indivíduos os nemátodes são o grupo animal mais abundante na Terra: quatro em cada cinco animais da Biosfera são nemátodes. Apesar de microscópicos, os animais multicelulares que constituem este grupo são capazes de explorar uma enorme variedade de habitats, nos mares, nas águas doces, nos solos, como parasitas de animais ou de plantas, ou mesmo em condições extremas, como nos solos secos da Antárctida ou em fontes termais (Baldwin et al. 1999). A actual informação sobre a nematofauna do arquipélago dos Açores encontra-se fraccionada e espalhada em diversas publicações científicas, mas igualmente em dados ainda não publicados (Sturhan, comunicação pessoal). Entre as diversas publicações de nemátodes para os Açores, há que salientar os trabalhos realizados por Sturhan (1973, 1975, 1983) e Macara (1994), que muito contribuíram para o conhecimento e distribuição actual das espécies de vida livre e parasitas de plantas; bem como os trabalhos de Afonso-Roque (1995) e Casanova et al. (1996) relativamente a espécies parasitas de animais, reportadas para as diferentes ilhas do arquipélago. A lista de nemátodes apresentada neste capítulo, tem como base as publicações conhecidas para o arquipélago (ver listagem de publicações até 2010 em www. naturdata.com), bem como o registo de espécies assinaladas pela primeira vez para o arquipélago (Sturhan, comunicação pessoal). A classificação utilizada baseia-se na recente revisão da sistemática e filogenia proposta por De Ley & Blaxter (2002) para todo o Filo, até ao nível da Família. A classificação dos restantes taxa segue o critério utilizado para a fauna terrestre da Fauna Europaea (http://www. faunaeur.org). É apresentada a distribuição das espécies nas nove ilhas dos Açores, usando-se a seguinte simbologia: COR – Corvo; FLO – Flores; FAI – Faial; PIC – Pico; GRA – Graciosa; SJG – São Jorge; TER – Terceira; SMG – São Miguel e SMR – Santa Maria.
Resumo:
Nas últimas décadas tem-se assistido a uma preocupação crescente relativamente às possíveis consequências da exposição a compostosxenóbioticos capazes de modular ou causar disrupção do sistema endócrino, os denominados Compostos Disruptores Endócrinos (CDEs). A maioria dos estudos efectuados tem-se centrado principalmente nos efeitos dos CDEs em vertebrados, enquanto que os seus efeitos em invertebrados têmsido negligenciados, embora este grupo represente mais de 95% de todas asespécies animais. Isópodes como o Porcellio scaber, combinam características associadas às mudas e aos processos reprodutivos mediados por mecanismos endócrinosconhecidos com um modo de vida terrestre, tornando-os potenciais espécies sentinela para estudos de disrupção endócrina (DE) em ambientes terrestres. Neste estudo, isópodes machos adultos, machos e fêmeas juvenis e casais foram expostos a concentrações crescentes dedois CDEs, vinclozolina (Vz) e bisfenol A (BPA). Testou-se a hipótese nula que a Vz e o BPA não interferem com o desenvolvimento e reprodução deste isópode terrestre. Foi investigadaa possível ligação entre os efeitos causados pelos compostos propostos e DE assim como a ligação a outros potenciais mecanismos de toxicidade.Parâmetros como concentração de 20-hidroxiecdisona (20E), muda, crescimento, rácios sexuais ediversos parâmetros reprodutivos foram estudados. Adicionalmente, de modo a estudar os alvos moleculares destes tóxicos, analisou-se a expressão proteica do intestino, hepatopâncreas e testículos do isópode após exposição aos químicos. Os resultados demonstram que a Vz e o BPA estimulam o aumento dos níveis de 20E de um modo dependente da dose. Excepção feita para a concentração mais baixa de BPA testada (10 mg/kg solo), para a qual concentrações significativamente mais altas de 20E foram determinadas, sugerindo a ocorrência dos “efeitos de baixas doses típicos de DE” já demonstrados por outros autores. O BPA também distorceu o rácio sexual favorecendo asfêmeas na concentração mais baixa. A mortalidade devido à ecdise incompleta foi relacionada com o hiper-ecdisonismo nas concentrações mais elevadas de Vz. Mais ainda, a Vz tende a atrasar a muda e o BPA a induzi-la. Não obstante, ambos os compostos provocam toxicidade no desenvolvimento,uma vez que foi encontrada uma diminuição generalizada nos parâmetros de crescimento. Os juvenis mostraram ser mais sensíveis à exposição aos tóxicos que os adultos. Estes compostos provocaram ainda toxicidade reprodutiva, com um decréscimo generalizado do “output” reprodutivo. A toxicidadecausada pelos ecdisteróides e o seu papel na síntese de vitelogenina são alguns dos factores chave que poderão influenciar negativamente a reprodução.A Vz e o BPA afectaram a expressão de proteínas envolvidas nometabolismo energético e induziram várias respostas de stress. Interferiram ainda com proteínas intimamente ligadas com o sucesso reprodutivo. Conclui-se assim,que ambos os CDEs propostos provocam toxicidade nodesenvolvimento e na reprodução de P. scaber, tendo sido evidenciada umaligação a DE. Alvos moleculares de natureza não-endócrina foram também revelados, através da expressão diferencial de algumas proteínaspreviamente descritas para invertebrados aquáticos e mesmo alguns vertebrados.