243 resultados para Terahertz
Resumo:
We present the design of a submillimeter-wave mixer based on electromagnetic band gap (EBG) technology and using subharmonic local oscillator (LO) injection. The indicated device converts an incoming submilimeter wavelength signal into a 1-5 GHz intermediate frequency (IF) signal by mixing it with a subharmonic LO signal. The mixer consists of a dual-band receiver and two coplanar stripline (CPS) filters, collocated on top of a three-dimensional (3-D) EBG structure. A four-element array of the proposed receivers was designed, fabricated and tested. The configuration demonstrated reasonable performance: conversion loss below 8 dB and noise temperature below 3000 K. The presented concept can be used for higher frequencies, provided the availability of sufficiently powerful LO sources.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.
Resumo:
In this paper, we report on an optical tolerance analysis of the submillimeter atmospheric multi-beam limb sounder, STEAMR. Physical optics and ray-tracing methods were used to quantify and separate errors in beam pointing and distortion due to reflector misalignment and primary reflector surface deformations. Simulations were performed concurrently with the manufacturing of a multi-beam demonstrator of the relay optical system which shapes and images the beams to their corresponding receiver feed horns. Results from Monte Carlo simulations show that the inserts used for reflector mounting should be positioned with an overall accuracy better than 100 μm (~ 1/10 wavelength). Analyses of primary reflector surface deformations show that a deviation of magnitude 100 μm can be tolerable before deployment, whereas the corresponding variations should be less than 30 μm during operation. The most sensitive optical elements in terms of misalignments are found near the focal plane. This localized sensitivity is attributed to the off-axis nature of the beams at this location. Post-assembly mechanical measurements of the reflectors in the demonstrator show that alignment better than 50 μm could be obtained.
Resumo:
Heterodyne receivers at millimeter and submillimeter wavelength are widely used for radiometric spectral line observations for atmospheric remote sensing or radio astronomy. The quantitative analysis of such observations requires an accurate knowledge of the mixers's sideband ratio. In addition, its potential sensitivity to spurious harmonics needs to be well understood. In this paper, we discuss a measurement technique for these receiver characteristics, which is based on a scanning Martin Puplett Interferometer used in conjunction with a wide band digital autocorrelation spectrometer for the analysis of the intermediate frequency band. We present measurement results of different double sideband and sideband separating mixers, which were developed for the proposed 340GHz multi-beam limb sounder STEAMR.
Resumo:
In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.